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Abstract. Single sign-on (SSO) systems, such as OpenID and OAuth, allow web sites, so-called relying parties
(RPs), to delegate user authentication to identity providers (IdPs), such as Facebook or Google. These systems are
very popular, as they provide a convenient means for users to log in at RPs and move much of the burden of user
authentication from RPs to IdPs.
There is, however, a downside to current systems, as they do not respect users’ privacy: IdPs learn at which RP a user
logs in. With one exception, namely Mozilla’s BrowserID system (a.k.a. Mozilla Persona), current SSO systems
were not even designed with user privacy in mind. Unfortunately, recently discovered attacks, which exploit design
flaws of BrowserID, show that BrowserID does not provide user privacy either.
In this paper, we therefore propose the first privacy-respecting SSO system for the web, called SPRESSO (for Secure
Privacy-REspecting Single Sign-On). The system is easy to use, decentralized, and platform independent. It is based
solely on standard HTML5 and web features and uses no browser extensions, plug-ins, or other executables.
Existing SSO systems and the numerous attacks on such systems illustrate that the design of secure SSO systems is
highly non-trivial. We therefore also carry out a formal analysis of SPRESSO based on an expressive model of the
web in order to formally prove that SPRESSO enjoys strong authentication and privacy properties.
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1 Introduction

Web-based Single Sign-On (SSO) systems allow a user to identify herself to a so-called relying party (RP), which
provides some service, using an identity that is managed by an identity provider (IdP), such as Facebook or Google.
If an RP uses an SSO system, a user does not need a password to log in at the RP. Instead, she is authenticated by the
IdP, which exchanges some data with the RP so that the RP is convinced of the user’s identity. When logged in at the
IdP already, a user can even log in at the RP by one click without providing any password. This makes SSO systems
very attractive for users. These systems are also very convenient for RPs as much of the burden of user authentication,
including, for example, the handling of user passwords and lost passwords, is shifted to the IdPs. This is why SSO
systems are very popular and widely used on the web. Over the last years, many different SSO systems have been
developed, with OpenID [13] (used by Google, Yahoo, AOL, and Wordpress, for example) and OAuth [14] (used by
Twitter, Facebook, PayPal, Microsoft, GitHub, and LinkedIn, for example) being the most prominent of such systems;
other SSO systems include SAML/Shibboleth, CAS, and WebAuth.

There is, however, a downside to these systems: with one exception, none of the existing SSO systems have been
designed to respect users’ privacy. That is, the IdP always knows at which RP the user logs in, and hence, which
services the user uses. In fact, exchanging user data between IdPs and RPs directly in every login process is a key part
of the protocols in OpenID and OAuth, for example, and thus, IdPs can easily track users.

The first system so far which was designed with the intent to respect users’ privacy was the BrowserID system
[19, 20], which is a relatively new system developed by Mozilla and is also known by its marketing name Persona.

Unfortunately, in [12] severe attacks against BrowserID were discovered, which show that the privacy of BrowserID
is completely broken: these attacks allow malicious IdPs and in some versions of the attacks even arbitrary parties
to check the login status of users at any RP with little effort (see Section 2.1 for some more details on these attacks).
Even worse, these attacks exploit design flaws of BrowserID that, as discussed in [12], cannot be fixed without a major
redesign of the system, and essentially require building a new system. As further discussed in Section 2.4, besides the
lack of privacy there are also other issues that motivate the design of a new system.

The goal of this work is therefore to design the (first) SSO system which respects users’ privacy in the sense
described above, i.e., IdPs (even completely malicious ones) should not be able to track at which RPs users log
in. Moreover, the history of SSO systems shows that it is highly non-trivial to design secure SSO systems, not only
w.r.t. privacy requirements, but even w.r.t. authentication requirements. Attacks easily go unnoticed and in fact numerous
attacks on SSO systems, including attacks on OAuth, OpenID, Google ID, Facebook Connect, SAML, and BrowserID
have been uncovered which compromise the security of many services and users at once [4–6, 21, 22, 25–28]. Besides
designing and implementing a privacy-respecting SSO system, we therefore also carry out a formal security analysis
of the system based on an expressive model of the web infrastructure in order to provide formal security guarantees.
More specifically, the contributions of our work are as follows.

Contributions of this Paper. In this work, we propose the system SPRESSO (for Secure Privacy-REspecting Single
Sign-On). This is the first SSO system which respects user’s privacy. The system allows users to log in to RPs with
their email addresses. A user is authenticated to an RP by the IdP hosting the user’s email address. This is done in such
a way that the IdP does not learn at which RP the user wants to log in.

Besides strong authentication and privacy guarantees (see also below), SPRESSO is designed in such a way that it
can be used across browsers, platforms, and devices. For this purpose, SPRESSO is based solely on standard HTML5
and web features and uses no browser extensions, plug-ins, or browser-independent executables.

Moreover, as further discussed in Section 2.1, SPRESSO is designed as an open and decentralized system. For
example, in contrast to OAuth, SPRESSO does not require any prior coordination or setup between RPs and IdPs: users
can log in at any RP with any email address with SPRESSO support.

We formally prove that SPRESSO enjoys strong authentication and privacy properties. Our analysis is based
on an expressive Dolev-Yao style model of the web infrastructure [10]. This web model is designed independently
of a specific web application and closely mimics published (de-facto) standards and specifications for the web, for
instance, the HTTP/1.1 and HTML5 standards and associated (proposed) standards. It is the most comprehensive web
model to date. Among others, HTTP(S) requests and responses, including several headers, such as cookie, location,
strict transport security (STS), and origin headers, are modeled. The model of web browsers captures the concepts of
windows, documents, and iframes, including the complex navigation rules, as well as new technologies, such as web
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storage and cross-document messaging (postMessages). JavaScript is modeled in an abstract way by so-called scripting
processes which can be sent around and, among others, can create iframes and initiate XMLHTTPRequests (XHRs).
Browsers may be corrupted dynamically by the adversary.

So far, this web model has been employed to analyze trace-based properties only, namely, authentication properties.
In this work, we formulate, for the first time, strong indistinguishability/privacy properties for web applications. Our
general definition is not tailored to a specific web application, and hence, should be useful beyond our analysis of
SPRESSO. These properties require that an adversary should not be able to distinguish two given systems. In order to
formulate these properties we slightly modify and extend the web model.

Finally, we formalize SPRESSO in the web model and formally state and prove strong authentication and privacy
properties for SPRESSO. The authentication properties we prove are central to any SSO system, where our formulation
of these properties follows the one in [10]. As for the privacy property, we prove that a malicious IdP cannot distinguish
whether an honest user logs in at one RP or another. The analysis we carry out in this work is also interesting by itself,
as web applications have rarely been analyzed based on an expressive web model (see Section 8).

Structure of this Paper. In Section 2, we describe our system and discuss and motivate design choices. We then, in
Section 3, briefly recall the general web model from [10] and explain the modifications and extensions we made. The
mentioned strong but general definition of indistinguishability/privacy for web applications is presented in Section 4. In
Section 5, we provide the formal model of SPRESSO, based on which we state and analyze privacy and authentication
of SPRESSO in Sections 6 and 7, respectively. Further related work is discussed in Section 8. We conclude in Section 9.
All details and proofs are available in the appendix. An online demo and the source code of SPRESSO are available
at [23].

2 Description of SPRESSO

In this section, we first briefly describe the main features of SPRESSO. We then provide a detailed description of the
system in Section 2.2, with further implementation details given in Section 2.3. To provide additional intuition and
motivation for the design of SPRESSO, in Section 2.4 we discuss potential attacks against SPRESSO and why they are
prevented.

2.1 Main Features

SPRESSO enjoys the following key features:

Strong Authentication and Privacy. SPRESSO is designed to satisfy strong authentication and privacy properties.
Authentication is the most fundamental security property of an SSO system. That is, i) an adversary should not

be able to log in to an RP, and hence, use the service of the RP, as an honest user, and ii) an adversary should not be
able to log in the browser of an honest user under an adversary’s identity (identity injection). Depending on the service
provided by the RP, a violation of ii) could allow the adversary to track an honest user or to obtain user secrets. We note
that in the past, attacks on authentication have been found in almost all deployed SSO systems (e.g., OAuth, OpenID,
and BrowserID [10, 12, 22, 24, 25, 27, 28]).

While authentication assumes the involved RP and IdP to be honest, privacy is concerned with malicious IdPs.
This property requires that (malicious) IdPs should not be able to track at which RPs specific users log in. As already
mentioned in the introduction, so far, except for BrowserID, no other SSO system was designed to provide privacy.
(In fact, exchanging user data between IdPs and RPs directly is a key part of the protocols in OpenID and OAuth, for
example, and hence, in such protocols, IdPs can easily track at which RP a user logs in.) However, BrowserID failed
to provide privacy: As shown in [12], a subtle attack allowed IdPs (and in some versions of the attack even arbitrary
parties) to check the login status of users at any RP. More specifically, by running a malicious JavaScript within the
user’s browser, an IdP can, for any RP, check whether the user is logged in at that RP by triggering the (automatic)
login process and testing whether a certain iframe is created during this process or not. The (non-)existence of this
iframe immediately reveals the user’s login status. Hence, a malicious IdP can track at which RP a user is logged in. As
we discuss in [12], this could not be fixed without a major redesign of BrowserID. Our work could be considered such
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Fig. 1. SPRESSO Login Flow.
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a major redesign. While SPRESSO shares some basic concepts with BrowserID, SPRESSO is, however, not based on
BrowserID, but a new system built from scratch (see the discussion in Section 2.4).

The above shows that the design of a secure SSO system is non-trivial and that attacks are very easy to overlook.
As already mentioned in the introduction, we therefore not only designed and implemented SPRESSO to meet strong
authentication and privacy properties, but also perform a formal analysis of SPRESSO in an expressive model of the
web infrastructure in order to show that SPRESSO in fact meets these properties.

An Open and Decentralized System. We created SPRESSO as a decentralized, open system. In SPRESSO, users are
identified by their email addresses, and email providers certify the users’ authenticity. Compared to OpenID, users do
not need to learn a new, complicated identifier — an approach similar to that of BrowserID. But unlike in BrowserID,
there is no central authority in SPRESSO (see also the discussion in Section 2.4). In contrast to OAuth, SPRESSO
does not require any prior coordination or setup between RPs and IdPs: Users can log in at any RP with any email
address with SPRESSO support. For email addresses lacking SPRESSO support, a seamless fallback can be provided,
as discussed later.

Adherence to Web Standards. SPRESSO is based solely on standard HTML5 and web features and uses no browser
extensions, plug-ins, or other client-side executables. This guarantees that SPRESSO can be used across browsers,
platforms and devices, including both desktop computers and mobile platforms, without installing any software (besides
a browser). Note that on smartphones, for example, browsers usually do no support extensions or plug-ins.

2.2 Login Flow

We now explain SPRESSO by a typical login flow in the system. SPRESSO knows three distinct types of parties:
relying parties (RPs), i.e., web sites where a user wishes to log in, identity providers (IdPs), providing to RPs a proof
that the user owns an email address (identity), and forwarders (FWDs), who forward messages from IdPs to RPs within
the browser. We start with a brief overview of the login flow and then present the flow in detail.

Overview. On a high level, the login flow consists of the following steps: First, on the RP web site, the user enters
her email address. RP then creates what we call a tag by encrypting its own domain name and a nonce with a freshly
generated symmetric key. This tag along with the user’s email address is then forwarded to the IdP. Due to the privacy
requirement, this is done via the user’s browser in such a way that the IdP does not learn from which RP this data was
received. Note also that the tag contains RP’s domain in encrypted form only. The IdP then signs the tag and the user’s
email address (provided that the user is logged in at the IdP, otherwise the user first has to log in). This signature is
called the identity assertion (IA). The IA is then transferred to the RP (again via the user’s browser), which checks the
signature and consistency of the data signed and then considers the user with the given email address to be logged in.
We note that passing the IA to the RP is done using an FWD (the RP determines which one is used) as it is important
that the IA is delivered to the correct RP (RP document). The IdP cannot ensure this, because, again due to the privacy
requirements, IdP is not supposed to know the intended RP.

Detailed Flow. We now take a detailed look at the SPRESSO login flow. We refer to the steps of the protocol as depicted
in Figure 1. We use the names RP, IdP, and FWD for the servers of the respective parties. We use RPdoc, RPRedirDoc,
IdPdoc, and FWDdoc as names for HTML documents delivered by the respective parties. The login flow involves the
servers RP, IdP, and FWD as well as the user’s browser (gray background), in which different windows/iframes are
created: first, the window containing RPdoc (which is present from the beginning), second, the login dialog created
by RPdoc (initially containing RPRedirDoc and later IdPdoc), and third, an iframe inside the login dialog where the
document FWDdoc from FWD is loaded.

As the first step in the protocol, the user opens the login page at RP 1 . The actual login then starts when the user
enters her email address 2 . RPdoc sends this address in a POST request to RP 3 . RP identifies the IdP (from the
domain in the email address) and retrieves a support document from IdP 4 . This document is retrieved from a fixed
URL https://IdPdomain/.well-known/spresso-info and contains a public (signature verification) key of the
IdP. RP now selects new nonces/symmetric keys rpNonce, iaKey, tagKey, and loginSessionToken 5 and creates the tag
tag by encrypting RP’s domain RPDomain and the nonce rpNonce under tagKey 6 . Using standard Dolev-Yao notation
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(see also Section 3), we denote this term by

tag := encs(〈RPDomain,rpNonce〉, tagKey) .

RP further selects an FWD (e.g., a fixed one from its settings). Now, RP stores tag, iaKey, the FWD domain, and the
email address in its session data store under the session key loginSessionToken and sends tagKey, FWDDomain, and
loginSessionToken as response to the POST request by RPdoc 7 .

RPdoc now opens the login dialog. Ultimately, this window contains the login dialog from IdP (IdPdoc) so that
the user can log in to IdP (if not logged in already). However, to preserve the user’s privacy (see the discussion in
Section 2.4), RPdoc does not launch the dialog with the URL of IdPdoc immediately. Instead, RPdoc opens the login
dialog with the URL of RPRedirDoc and attaches the loginSessionToken 8 . RPRedirDoc is loaded from RP ( 9 and 10 )
and redirects the login dialog to IdPdoc ( 11 and 12 ), passing the user’s email address, the tag, the FWD domain, and
the iaKey from RP, as stored under the session key loginSessionToken, to IdPdoc.1

After the browser loaded IdPdoc from IdP, the user enters her password2 matching her email address 13 . The
password, the email address, the tag, and the FWD domain are now sent to IdP 14 . After IdP verified the user
credentials 15 , it creates the identity assertion as the signature

ia := sig(〈tag,email,FWDDomain〉,kIdP)

using its private signing key kIdP 16 and then returns ia to IdPdoc 17 . We note that ia contains the signature only, not
the data that was signed.

To avoid that the FWD learns the IA (we discuss this further in Section 2.4), IdPdoc now encrypts the IA using the
iaKey 18 :

eia := encs(ia, iaKey) .

Then, IdPdoc opens an iframe with the URL of FWDdoc, passing the tag and the encrypted IA to FWDdoc. After
the iframe is loaded 20 , FWDdoc sends a postMessage3 to its parent’s opener window, which is RPdoc 21 . This
postMessage with the sole content “ready” triggers RPdoc to send the tagKey to FWDdoc, where in the postMessage
the origin4 of FWD with HTTPS is declared to be the only allowed receiver of this message 22 . FWDdoc uses the key
to decrypt the tag and thereby learns the intended receiver (RP) of the IA 23 . As its last action, FWD forwards the
encrypted IA eia via postMessage to RPdoc (using RP’s HTTPS origin as the only allowed receiver) 24 .

RPdoc receives eia and sends it along with the loginSessionToken to RP 25 . RP then decrypts eia, retrieves ia′ and
checks whether ia′ is a valid signature for 〈tag,email,FWDDomain〉 under the verification key pub(kIdP) of the IdP,
where tag, email, and FWDDomain are taken from the session data identified by loginSessionToken 26 .

Now, the user identified by the email address is logged in. The mechanism that is used to persist this logged-in state
(if any) at this point is out of the scope of SPRESSO. In our analysis, as a model for a standard session-based login,
we assume that RP creates a session for the user’s browser, identified by some freshly chosen token (the RP service
token) 27 and sends this token to the browser 28 .

2.3 Implementation Details

We developed a proof-of-concept implementation of SPRESSO in about 700 lines of JavaScript and HTML code. It
contains all presented features of SPRESSO itself and a typical IdP. The implementation (source code and online demo)
is available at [23]. Our model presented in Section 5 closely follows this implementation.

The three servers (RP, IdP and FWD) are written in JavaScript and are based on node.js and its built-in crypto API.
On the client-side we use the Web Cryptography API. For encryption we employ AES-256 in GCM mode to provide
authenticity. Signatures are created/verified using RSA-SHA256.

1This data is passed to IdPdoc in the fragment identifier of the URL (a.k.a. hash), and therefore, it is not necessarily sent to IdP.
2In fact, the IdP can as well offer any other form of authentication, e.g., TLS client authentication or two-factor authentication.
3postMessages are messages that are sent between different windows in one browser.
4An origin is defined by a domain name plus the information whether the connection to this domain is via HTTP or HTTPS.
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2.4 Discussion

In order to provide more intuition and motivation for the design of SPRESSO, and in particular its security and
privacy properties, we first informally discuss some potential attacks on our system and what measures we took when
designing and implementing SPRESSO to prevent these attacks. These attacks also illustrate the complexity and
difficulty of designing a secure and privacy-respecting web-based SSO system. In Sections 6 and 7, we formally prove
that SPRESSO provides strong authentication and privacy properties in a detailed model of the web infrastructure.
We also discuss other aspects of SPRESSO, including usability and performance. We conclude this section with a
comparison of SPRESSO and BrowserID.

Malicious RP: Impersonation Attack. An attacker could try to launch a man in the middle attack against SPRESSO
by playing the role of an RP (RP server and RPdoc) to the user. Such an attacker would run a malicious server at his
RP domain, say, RPa, and also deliver a malicious script (instead of the honest RPdoc script) to the user’s browser.
Now assume that the user wants to log in with her email address at RPa and is logged in at the IdP corresponding to
the email address already. Then, the attacker (outside of the user’s browser) could first initiate the login process at
RPb using the user’s email address. The attacker’s RP could then create a tag of the form encs(〈RPb,rpNonce〉, tagKey)
using the domain of an honest RP RPb, instead of RPa. The IdP would hence create an IA for this tag and the user’s
email address and deliver this IA to the user’s browser. If this IA were now indeed be delivered to the attacker’s RP
window (which is running a malicious RPdoc script), the attacker could use the IA to finish the log in process at RPb
(and obtain the service token from RPb), and thus, log in at RPb as the honest user.

However, assuming that FWD is honest (see below for a discussion of malicious FWDs), FWD prevents this kind
of attack: FWD forwards the (encrypted) IA via a postMessage only to the domain listed in the tag (so, in this case,
RPb), which in the attack above is not the domain of the document loaded in the attacker’s RP window (RPa). The IA
is therefore not transmitted to the attacker. The same applies when the attacker tries to navigate the RP window to its
own domain, i.e., to RPa, before Step 24 . Our formal analysis presented in the following sections indeed proves that
such attacks are excluded in SPRESSO. We note that in order to make sure that the postMessage is delivered to the
correct RP window (technically, a window with the expected origin), FWD uses a standard feature of the postMessage
mechanism which allows to specify the origin of the intended recipient of a postMessage.

Malicious IdP. A malicious IdP could try to log the user in under an identity that is not her own. An attack of this kind
on BrowserID was shown in [10]. However, in SPRESSO, the IdP cannot select or alter the identity with which the
user is logged in. Instead, the identity is fixed by RP after Step 6 and checked in Step 26 . Again, our formal analysis
shows that such attacks are indeed not possible in SPRESSO.

The IdP could try to undermine the user’s privacy by trying to find out which RP requests the IA. However, in
SPRESSO, the IdP cannot gather such information: From the information available to it (email, tag, FWDDomain plus
any information it can gather from the browser’s state), it cannot infer the RP.5 It could further try to corellate the
sources and times of HTTPS requests for the support document with user logins. To minimize this side channel, we
suggest caching the support document at each RP and automatic refreshing of this cache (e.g., an RP could cache the
document for 48 hours and after that period automatically refresh the cache). Additionally, RPs should use the Tor
network (or similar means) when retrieving the support document in order to hide their IP addresses. Assuming that
support documents have been obtained from IdPs independently of specific login requests by users, our formal analysis
shows that SPRESSO in fact enjoys a very strong privacy property (see Sections 4 and 6).

In BrowserID, malicious IdPs (in fact, any party who can run malicious scripts in the user’s browser) can check the
presence or absence of certain iframes in the login process, leading to the privacy break mentioned earlier. Again, our
formal analysis implies that this is not possible for SPRESSO.

Malicious FWD. A malicious FWD could cooperate with or act as a malicious RP and thereby enable the man in the
middle attack discussed above, undermining the authentication guarantees of the system. Also, a malicious FWD could
collaborate with a malicious IdP and send information about the RP to the IdP, and hence, undermine privacy.

5If only a few RPs use a specific FWD, FWDDomain would reveal some information. However, this is easy to avoid in practice:
the set of FWDs all (or many) RPs trust should be big enough and RPs could randomly choose one of these FWDs for every login
process.
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Therefore, for our system to provide authentication and privacy, we require that FWDs behave honestly. Below we
discuss ways to force FWD to behave honestly. We suspect that there is no way to avoid the use of FWDs or other
honest components in a practical SSO system which is supposed to provide not only authentication but also privacy:
In our system, after Step 17 of the flow, IdPdoc must return the IA to the RP. There are two constraints: First, the IA
should only be forwarded to a document that in fact is RP’s document. Otherwise, it could be misused to log in at RP
under the user’s identity by any other party, which would break authentication. Second, RP’s identity should not be
revealed to IdP, which is necessary for privacy. Currently, there is no browser mechanism to securely forward the IA to
RP without disclosing RP’s identity to IdP (but see below).

Enforcing Honest FWDs. Before we discuss existing and upcoming technologies to enforce honest behavior of FWDs,
we first note that in SPRESSO, an FWD is chosen by the RP to which a user wants to log in. So the RP can choose
the FWD it trusts. The RP certainly has a great interest in the trustworthiness of the FWD: As mentioned, a malicious
FWD could allow an attacker to log in as an honest user (and hence, misuse RP’s service and undermine confidentiality
and integrity of the user’s data stored at RP), something an RP would definitely want to prevent. Second, we also note
that FWD does not learn a user’s email address: the IA, which is given to FWD and which contains the user’s email
address, is encrypted with a symmetric key unknown to FWD.6 Therefore, SPRESSO does not provide FWD with
information to track at which RP a specific user logs in.7

Now, as for enforcing honest FWDs, first note that an honest FWD server is supposed to always deliver the same
fixed JavaScript to a user’s browsers. This JavaScript code is very short (about 50 lines of code). If this code is used,
it is not only ensured that FWD preserves authentication and privacy, but also that no tracking data is sent back to the
FWD server.

Using current technology, a user could use a browser extension which again would be very simple and which would
make sure that in fact only this specific JavaScript is delivered by FWD (upon the respective request). As a result, FWD
would be forced to behave honestly, without the user having to trust FWD. Another approach would be an extension
that replaces FWD completely, which could also lead to a simplified protocol. In both cases, SPRESSO would provide
authentication and privacy without having to trust any FWD. Both solutions have the common problem that they do not
work on all platforms, because not on all platforms browsers support extensions. The first solution (i.e., the extension
checks only that correct JavaScript is loaded) would at least still work for users on such platforms, albeit with reduced
security and privacy guarantees.

A native web technology called subresource integrity (SRI)8 is currently under development at the W3C. SRI
allows a document to create an iframe with an attribute integrity that takes a hash value. The browser now would
guarantee that the document loaded into the iframe hashes to exactly the given value. So, essentially the creator of the
iframe can enforce the iframe to be loaded with a specific document. This would enable SPRESSO to automatically
check the integrity of FWDdoc without any extensions.

Referer Header and Privacy. The Referer [sic!] header is set by browsers to show which page caused a navigation to
another page. It is set by all common browsers. To preserve privacy, when the loading of IdPdoc is initiated by RPdoc,
it is important that the Referer header is not set, because it would contain RP’s domain, and consequently, IdP would
be able to read off from the Referer header to which RP the user wants to log in, and hence, privacy would be broken.
With HTML5, a special attribute for links in HTML was introduced, which causes the Referer header to be suppressed
(rel="noreferrer"). However, when such a link is used to open a new window, the new window does not have a
handle on the opening window (opener) anymore. But having a handle is essential for SPRESSO, as the postMessage
in Step 21 is sent to the opener window of IdPdoc. To preserve the opener handle while at the same time hiding the
referer, we first open the new window with a redirector document loaded from RP (Step 8 ) and then navigate this
window to IdPdoc (using a link with the noreferrer attribute set and triggered by JavaScript in Step 11 ). This causes the

6We note that IA is a signature anyway, so typically a signed hash of a message. Hence, for common signature schemes, already
from the IA itself FWD is not able to extract the user’s email address. In addition, SPRESSO even encrypts the IA to make sure that
this is the case no matter which signature scheme is used.

7A malicious FWD could try to set cookies and do browser fingerprinting to the track the behavior of specific browsers. Still it
does not obtain the user’s email address.

8http://www.w3.org/TR/SRI/
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Referer header to be cleared, while the opener handle is preserved.9 Our formal analysis implies that with this solution
indeed privacy is preserved.

Cross-Site Request Forgery. Cross-site request forgery is particularly critical at RP, where it could be used to log a
user in under an identity that is not her own. For RP, SPRESSO therefore employs a session token that is not stored in
a cookie, but only in the state of the JavaScript, avoiding cross-origin and cross-domain cookie attacks. Additionally,
RP checks the Origin header of the login request to make sure that no login can be triggered by a third party (attacker)
web page. Our formal analysis implies that cross-site request forgery and related attacks are not possible in SPRESSO.

Phishing. It is important to notice that in SPRESSO the user can verify the location and TLS certificate of IdPdoc’s
window by checking the location bar of her browser. The user can therefore check where she enters her password,
which would not be possible if IdPdoc was loaded in an iframe. Setting strict transport security headers can further
help in avoiding phishing attacks.

Tag Length Side Channel. The length of the tag created in Step 6 depends on the length of RPDomain. Since the tag
is given to IdP, IdP might try to infer RPDomain from the length of the tag. However, according to RFC 1035, domain
names may at most be 253 characters long. Therefore, by appropriate padding (e.g., encrypting always nine 256 Bit
plaintext blocks)10 the length of the tag will not reveal any information about RPDomain.

Performance. SPRESSO uses only standard browser features, employs only symmetric encryption/decryption and
signatures, and requires (in a minimal implementation) eight HTTPS requests/responses — all of which pose no
significant performance overhead to any modern web application, neither for the browser nor for any of the servers.
In our prototypical and unoptimized implementation, a login process takes less than 400 ms plus the time for entering
email address and password.

Usability. In SPRESSO, users are identified by their email addresses (an identifier many users easily memorize) and
email providers serve as identity providers. Many web applications today already use the email address as the primary
identifier along with a password for the specific web site: When a user signs up, a URL with a secret token is sent to
the user’s email address. The user has to check her emails and click on the URL to confirm that she has control over the
email address. She also has to create a password for this web site. SPRESSO could seamlessly be integrated into this
sign up scheme and greatly simplify it: If the email provider (IdP) of the user supports SPRESSO, an SPRESSO login
flow can be launched directly once the user entered her email address and clicked on the login button, avoiding the
need for a new user password and the email confirmation; and if the user is logged in at the IdP already, the user does
not even have to enter a password. Otherwise, or if a user has JavaScript disabled, an automatic and seamless fallback
to the classical token-based approach is possible (as RP can detect whether the IdP supports SPRESSO in Step 4 of
the protocol). In contrast to other login systems, such as Google ID, the user would not even have to decide whether
to log in with SPRESSO or not due to the described seamless integration of SPRESSO. Due to the privacy guarantees
(which other SSO systems do not have), using SPRESSO would not be disadvantageous for the user as her IdPs cannot
track to which RPs the user logs in.

The above illustrates that, using SPRESSO, signing up to a web site is very convenient: The user just enters her
email address at the RP’s web site and presses the login button (if already logged in at the respective IdP, no password
is necessary). Also, with SPRESSO the user is free to use any of her email addresses.

Extendability. SPRESSO could be extended to have the IdP sign (in addition to the email address) further user
attributes in the IA, which then might be used by the RP.

Operating FWD. Operating an FWD is very cheap, as the only task is to serve one static file. Any party can act as an
FWD. Users and RPs might feel most confident if an FWD is operated by widely trusted non-profit organizations, such
as Mozilla or the EFF.

9Another option would have been to use a data URI instead of loading the redirector document from RPdoc and to use a Refresh
header contained in a meta tag for getting rid of the Referer header. This however showed worse cross-browser compatibility, and
the Refresh header lacks standardization.

10Eight 256 bit blocks are sufficient for all domain names. We need an additional block for rpNonce.
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Comparison with BrowserID. BrowserID was the first and so far only SSO system designed to provide privacy (IdPs
should not be able to tell at which RPs user’s log in). Nonetheless, as already mentioned (see Section 2.1), severe
attacks were discovered in [12] which show that the privacy promise of BrowserID is broken: not only IdPs but even
other parties can track the login behavior of users. Regaining privacy would have required a major redesign of the
system, resulting in essentially a completely new system, as pointed out in [12]. Also, BrowserID has the disadvantage
that it relies on a single trusted server (login.persona.org) which is quite complex, with several server interactions
necessary in every login process, and most importantly, by design, gets full information about the login behavior of
users (the user’s email address and the RP at which the user wants to log in).11 Finally, BrowserID is a rather complex
SSO system (with at least 64 network and inter-frame messages in a typical login flow12 compared to only 19 in
SPRESSO). This complexity implies that security vulnerability go unnoticed more easily. In fact, several attacks on
BrowserID breaking authentication and privacy claims were discovered (see [10, 12]).

This is why we designed and built SPRESSO from scratch, rather than trying to redesign BrowserID. The design
of SPRESSO is in fact very different to BrowserID. For example, except for HTTPS and signatures of IdPs, SPRESSO
uses only symmetric encryption, whereas in BrowserID, users (user’s browers) have to create public/private key pairs
and IdPs sign the user’s public keys. The entities in SPRESSO are different to those in BrowserID as well, e.g.,
SPRESSO does not rely on the mentioned single, rather complex, and essentially omniscient trusted party, resulting in
a completely different protocol flow. The design of SPRESSO is much slimmer than the one of BrowserID.

3 Web Model

Our formal security analysis of SPRESSO (presented in the next sections) is based on the general Dolev-Yao style web
model in [10]. As mentioned in the introduction, we changed some details in this model to facilitate the definition of
indistinguishability/privacy properties (see Section 4). In particular, we simplified the handling of nonces and removed
non-deterministic choices wherever possible. Also, we added the HTTP Referer header and the HTML5 noreferrer
attribute for links.

Here, we only present a very brief version of the web model. The full model, including our changes, is provided in
Appendices A–C.

3.1 Communication Model

The main entities in the communication model are atomic processes, which are used to model web browsers, web
servers, DNS servers as well as web and network attackers. Each atomic process listens to one or more (IP) addresses.
A set of atomic processes forms what is called a system. Atomic processes can communicate via events, which consist
of a message as well as a receiver and a sender address. In every step of a run, one event is chosen non-deterministically
from the current “pool” of events and is delivered to one of the atomic processes that listens to the receiver address of
that event. The atomic process can then process the event and output new events, which are added to the pool of events,
and so on. More specifically, messages, processes, etc. are defined as follows.

Terms, Messages and Events. As usual in Dolev-Yao models (see, e.g., [1]), messages are expressed as formal terms
over a signature. The signature Σ for the terms and messages considered in the web model contains, among others,
constants (such as (IP) addresses, ASCII strings, and nonces), sequence and projection symbols, and further function
symbols, including those for (a)symmetric encryption/decryption and digital signatures. Messages are defined to be
ground terms (terms without variables). For example (see also Section 2.2 where we already use the term notation to
describe messages), pub(k) denotes the public key which belongs to the private key k. To provide another example of
a message, in the web model, an HTTP request is represented as a ground term containing a nonce, a method (e.g.,

11In SPRESSO, we require that FWD behaves honestly. In a login process, however, the FWD server needs to provide only a
fixed single and very simple JavaScript, no further server interaction is necessary. Also, FWD does not get full information and RP
in every login process may choose any FWD it trusts. Moreover, as discussed above, there are means to force FWD to provide the
expected JavaScript.

12Counting HTTP request and responses as well as postMessages, leaving out any user requests for GUI elements or other
non-necessary resources.
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GET or POST), a domain name, a path, URL parameters, request headers (such as Cookie), and a message body. For
instance, an HTTP GET request for the URL http://example.com/show?p=1 is modeled as the term

r := 〈HTTPReq,n1,GET,example.com,/show,〈〈p,1〉〉,〈〉,〈〉〉 ,

where headers and body are empty. An HTTPS request for r is of the form enca(〈r,k′〉,pub(kexample.com)), where k′ is a
fresh symmetric key (a nonce) generated by the sender of the request (typically a browser); the responder is supposed
to use this key to encrypt the response.

Events are terms of the form 〈a, f ,m〉 where a and f are receiver/sender (IP) addresses, and m is a message, for
example, an HTTP(S) message as above or a DNS request/response.

The equational theory associated with the signature Σ is defined as usual in Dolev-Yao models. The theory induces
a congruence relation ≡ on terms. It captures the meaning of the function symbols in Σ . For instance, the equation in
the equational theory which captures asymmetric decryption is deca(enca(x,pub(y)),y) = x. With this, we have that,
for example,

deca(enca(〈r,k′〉,pub(kexample.com)),kexample.com)≡ 〈r,k′〉 ,

i.e., these two terms are equivalent w.r.t. the equational theory.

Atomic Processes, Systems and Runs. Atomic Dolev-Yao processes, systems, and runs of systems are defined as
follows.

An atomic Dolev-Yao (DY) process is a tuple

p = (Ip,Zp,Rp,sp
0)

where Ip is the set of addresses the process listens to, Zp is a set of states (formally, terms), sp
0 ∈ Zp is an initial

state, and Rp is a relation that takes an event and a state as input and (non-deterministically) returns a new state and a
sequence of events. This relation models a computation step of the process, which upon receiving an event in a given
state non-deterministically moves to a new state and outputs a set of events. It is required that the events and states in
the output can be computed (more formally, derived in the usual Dolev-Yao style) from the current input event and
state. We note that in [10] the definition of an atomic process also contained a set of nonces which the process may use.
Instead of such a set, we now consider a global sequence of (unused) nonces and new nonces generated by an atomic
process are taken from this global sequence.

The so-called attacker process is an atomic DY process which records all messages it receives and outputs all events
it can possibly derive from its recorded messages. Hence, an attacker process is the maximally powerful DY process. It
carries out all attacks any DY process could possibly perform and is parametrized by the set of sender addresses it may
use. Attackers may corrupt other DY processes (e.g., a browser).

A system is a set of atomic processes. A configuration (S,E,N) of this system consists of the current states of all
atomic processes in the system (S), the pool of waiting events (E, here formally modeled as a sequence of events;
in [10], the pool was modeled as a multiset), and the mentioned sequence of unused nonces (N).

A run of a system for an initial sequence of events E0 is a sequence of configurations, where each configuration
(except for the initial one) is obtained by delivering one of the waiting events of the preceding configuration to an atomic
process p (which listens to the receiver address of the event), which in turn performs a computation step according to
its relation Rp. The initial configuration consists of the initial states of the atomic processes, the sequence E0, and an
initial infinite sequence of unused nonces.

Scripting Processes. The web model also defines scripting processes, which model client-side scripting technologies,
such as JavaScript.

A scripting process (or simply, a script) is defined similarly to a DY process. It is called by the browser in which
it runs. The browser provides it with state information s, and the script then, according to its computation relation,
outputs a term s′, which represents the new internal state and some command which is interpreted by the browser (see
also below). Again, it is required that a script’s output is derivable from its input.

Similarly to an attacker process, the so-called attacker script Ratt may output everything that is derivable from the
input.

13

http://example.com/show?p=1


3.2 Web System

A web system formalizes the web infrastructure and web applications. Formally, a web system is a tuple

(W,S ,script,E0)

with the following components:

• The first component, W, denotes a system (a set of DY processes as defined above) and contains honest processes,
web attacker, and network attacker processes. While a web attacker can listen to and send messages from its
own addresses only, a network attacker may listen to and spoof all addresses (and therefore is the maximally
powerful attacker). Attackers may corrupt other parties. In the analysis of a concrete web system, we typically
have one network attacker only and no web attackers (as they are subsumed by the network attacker), or one or
more web attackers but then no network attacker. Honest processes can either be web browsers, web servers, or
DNS servers. The modeling of web servers heavily depends on the specific application. The web browser model,
which is independent of a specific web application, is presented below.
• The second component, S , is a finite set of scripts, including the attacker script Ratt. In a concrete model, such

as our SPRESSO model, the set S \ {Ratt} describes the set of honest scripts used in the web application under
consideration while malicious scripts are modeled by the “worst-case” malicious script, Ratt.
• The third component, script, is an injective mapping from a script in S to its string representation script(s) (a

constant in Σ ) so that it can be part of a messages, e.g., an HTTP response.
• Finally, E0 is a sequence of events, which always contains an infinite number of events of the form 〈a,a,TRIGGER〉

for every IP address a in the web system.

A run of the web system is a run of W initiated by E0.

3.3 Web Browsers

We now sketch the model of the web browser, with full details provided in Appendix C. A web browser is modeled as
a DY process (Ip,Zp,Rp,sp

0).
An honest browser is thought to be used by one honest user, who is modeled as part of the browser. User actions

are modeled as non-deterministic actions of the web browser. For example, the browser itself non-deterministically
follows the links in a web page. User data (i.e., passwords and identities) is stored in the initial state of the browser and
is given to a web page when needed, similar to the AutoFill feature in browsers.

Besides the user identities and passwords, the state of a web browser (modeled as a term) contains a tree of open
windows and documents, lists of cookies, localStorage and sessionStorage data, a DNS server address, and other data.

In the browser state, the windows subterm is the most complex one. It contains a window subterm for every open
window (of which there may be many at a time), and inside each window, a list of documents, which represent the
history of documents that have been opened in that window, with one of these documents being active, i.e., this
document is presented to the user and ready for interaction. A document contains a script loaded from a web server
and represents one loaded HTML page. A document also contains a list of windows itself, modeling iframes. Scripts
may, for example, navigate or create windows, send XHRs and postMessages, submit forms, set/change cookies,
localStorage, and sessionStorage data, and create iframes. When activated, the browser provides a script with all data
it has access to, such as a (limited) view on other documents and windows, certain cookies as well as localStorage and
sessionStorage.

Figure 2 shows a brief overview of the browser relation Rp which defines how browsers behave. For example, when
a TRIGGER message is delivered to the browser, the browser non-deterministically choses an action. If, for instance,
this action is 1, then an active document is selected non-deterministically, and its script is triggered. The script (with
inputs as outlined above), can now output a command, for example, to follow a hyperlink (HREF). In this case, the
browser will follow this link by first creating a new DNS request. Once a response to that DNS request arrives, the
actual HTTP request (for the URL defined by the script) will be sent out. After a response to that HTTP request arrives,
the browser creates a new document from the contents of the response. Complex navigation and security rules ensure
that scripts can only manipulate specific aspects of the browser’s state. Browsers can become corrupted, i.e., be taken
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PROCESSING INPUT MESSAGE m

m = FULLCORRUPT: isCorrupted := FULLCORRUPT

m = CLOSECORRUPT: isCorrupted := CLOSECORRUPT

m = TRIGGER: non-deterministically choose action from {1,2,3}
action = 1: Call script of some active document.

Outputs new state and command.
command = HREF:→ Initiate request
command = IFRAME: Create subwindow,→ Initiate request
command = FORM:→ Initiate request
command = SETSCRIPT: Change script in given document.
command = SETSCRIPTSTATE: Change state of script

in given document.
command = XMLHTTPREQUEST:→ Initiate request
command = BACK or FORWARD: Navigate given window.
command = CLOSE: Close given window.
command = POSTMESSAGE: Send postMessage to specified
document.

action = 2:→ Initiate request to some URL in new window
action = 3:→ Reload some document

m = DNS response: send corresponding HTTP request
m = HTTP(S) response: (decrypt,) find reference.

reference to window: create document in window
reference to document: add response body to document’s

script input

Fig. 2. The basic structure of the web browser relation Rp with an extract of the most important processing steps, in the case that
the browser is not already corrupted.

over by web and network attackers. The browser model comprises two types of corruption: close-corruption, modeling
that a browser is closed by the user, and hence, certain data is removed (e.g., session cookies and opened windows),
before it is taken over by the attacker, and full corruption, where no data is removed in advance. Once corrupted, the
browser behaves like an attacker process.

4 Indistinguishability of Web Systems

We now define the indistinguishability of web systems. This definition is not tailored towards a specific web application,
and hence, is of independent interest.

Our definition follows the idea of trace equivalence in Dolev-Yao models (see, e.g., [9]), which in turn is an abstract
version of cryptographic indistinguishability.

Intuitively, two web systems are indistinguishable if the following is true: whenever the attacker performs the same
actions in both systems, then the sequence of messages he obtains in both runs look the same from the attacker’s point
of view, where, as usual in Dolev-Yao models, two sequences are said to “look the same” when they are statically
equivalent [1] (see below). More specifically, since, in general, web systems allow for non-deterministic actions (also
of honest parties), the sequence of actions of the attacker might induce a set of runs. Then indistinguishability says that
for all actions of the attacker and for every run induced by such actions in one system, there exists a run in the other
system, induced by the same attacker actions, such that the sequences of messages the attacker obtains in both runs
look the same to the attacker.

Defining the actions of attackers in web systems requires care because the attacker can control different components
of such a system, but some only partially: A web attacker (unlike a network attacker) controls only part of the network.
Also an attacker might control certain servers (web servers and DNS servers) and browsers. Moreover, he might control
certain scripts running in honest browsers, namely all attacker scripts Ratt running in browsers; dishonest browsers are
completely controlled by the attacker anyway.
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We model a single action of the attacker by what we call a (web system) command; not to be confused with
commands output by a script to the browser. A command is of the form

〈i, j, τprocess,cmdswitch,cmdwindow, τscript,url〉 .

The first component i ∈N determines which event from the pool of events is processed. If this event could be delivered
to several processes (recall that a network attacker, if present, can listen to all addresses), then j determines the process
which actually gets to process the event. Now, there are different cases depending on the process to which the event is
delivered and depending on the event itself. We denote the process by p and the event by e: i) If p is corrupted (it is a
web attacker, network attacker, some corrupted browser or server), then the new state of this process and its output are
determined by the term τprocess, i.e., this term is evaluated with the current state of the process and the input e. ii) If p
is an honest browser and e is not a trigger message (e.g., a DNS or HTTP(S) response), then the browser processes e
as usual (in a deterministic way). iii) If p is an honest browser and e is a trigger message, then there are three actions
a browser can (non-deterministically) choose from: open a new window, reload a document, or run a script. The term
cmdswitch ∈ {1,2,3} selects one of these actions. If it chooses to open a new window, a document will be loaded from
the URL url. In the remaining two cases, cmdwindow determines the window which should be reloaded or in which a
script is executed. If a script is executed and this script is the attacker script, then the output of this script is derived
(deterministically) by the term τscript, i.e., this term is evaluated with the data provided by the browser. The resulting
command, if any, is processed (deterministically) by the browser. If the script to be executed is an honest script (i.e.,
not Ratt), then this script is evaluated and the resulting command is processed by the browser. (Note that the script
might perform non-deterministic actions.) iv) If p is an honest process (but not a browser), then the process evaluates e
as usual. (Again, the computation might be non-deterministic, as honest processes might be non-deterministic.)

We call a finite sequence of commands a schedule. Given a web system WS = (W,S ,script,E0), a schedule σ
induces a set of (finite) runs in the obvious way. We denote this set by σ(WS). Intuitively, a schedule models the
attacker actions in a run. Note that we consider a very strong attacker. He not only determines the actions of all
dishonest processes and all attacker scripts, but also schedules all events, not only events intended for the attacker;
clearly, the attacker does not get to see explicitly events not intended for him.

Before we can define indistinguishability of two web systems, we need to, as mentioned above, recall the definition
of static equivalence of two messages t1 and t2. We say that the messages t1 and t2 are statically equivalent, written
t1 ≈ t2, if and only if, for all terms M(x) and N(x) which contain one variable x and do not use nonces, we have that
M(t1) ≡ N(t1) iff M(t2) ≡ N(t2). That is, every test performed by the attacker yields the same result for t1 and t2,
respectively. For example, if k and k′ are nonces, and r and r′ are different constants, then

enca(〈r,k′〉,pub(k))≈ enca(〈r′,k′〉,pub(k)) .

Intuitively, this is the case because the attacker does not know the private key k.
We also need the following terminology. If (W,S ,script,E0) is a web system and p is an attacker process in W,

then we say that (W,S ,script,E0, p) is a web system with a distinguished attacker process p. If ρ is a finite run of this
system, we denote by ρ(p) the state of p at the end of this run. In our indistinguishability definition, we will consider
the state of the distinguished attacker process only. This is sufficient since the attacker can send all its data to this
process.

Now, we are ready to define indistinguishability of web systems in a natural way.

Definition 1. Let WS 0 and WS 1 be two web system each with a distinguished attacker process p0 and p1, respectively.
We say that these systems are indistinguishable, written WS 0 ≈WS 1, iff for every schedule σ and every i ∈ {0,1}, we
have that for every run ρ ∈ σ(WS i) there exists a run ρ′ ∈ σ(WS 1−i) such that ρ(pi)≈ ρ′(p1−i).

5 Formal Model of SPRESSO

We now present the formal model of SPRESSO, which closely follows the description in Section 2 and the implemen-
tation of the system. This model is the basis for our formal analysis of privacy and authentication properties presented
in Sections 6 and 7.
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s ∈ S script(s)

Ratt att_script
script_rp script_rp
script_rp_redir script_rp_redir
script_idp script_idp
script_fwd script_fwd

Fig. 3. List of scripts in S and their respective string representations.

We model SPRESSO as a web system (in the sense of Section 3.2). We call SWS = (W ,S ,script,E0) an SPRESSO
web system if it is of the form described in what follows.

The set W = Hon∪Web∪Net consists of a finite set of web attacker processes (in Web), at most one network
attacker process (in Net), a finite set FWD of forwarders, a finite set B of web browsers, a finite set RP of web servers
for the relying parties, a finite set IDP of web servers for the identity providers, and a finite set DNS of DNS servers,
with Hon :=B∪RP∪ IDP∪FWD∪DNS. Figure 7 shows the set of scripts S and their respective string representations
that are defined by the mapping script. The set E0 contains only the trigger events as specified in Section 3.2.

We now sketch the processes and the scripts in W and S (see Appendix D for full details). As mentioned, our
modeling closely follows the description in Section 2 and the implementation of the system:

• Browsers (in B) are defined as described in Section 3.3.
• A relying party (in RP) is a web server. RP knows four distinct paths: /, where it serves the index web page

(script_rp), /startLogin, where it only accepts POST requests and mainly issues a fresh RP nonce, /redir,
where it only accepts requests with a valid login session token and serves script_rp_redir to redirect the browser
to the IdP, and /login, where it also only accepts POST requests with login data obtained during the login process
by script_rp running in the browser. It checks this data and, if the data is considered to be valid, it issues a service
token. The RP keeps a list of such tokens in its state. Intuitively, a client having such a token can use the service of
the RP.

• Each IdP (in IDP) is a web server. It knows three distinct paths: /.well-known/spresso-login, where it serves
the login dialog web page (script_idp), /.well-known/spresso-info, where it serves the support document
containing its public key, and /sign, where it issues a (signed) identity assertion. Users can authenticate to the IdP
with their credentials and IdP tracks the state of the users with sessions. Only authenticated users can receive IAs
from the IdP.

• Forwarders (in FWD) are web servers that have only one state (i.e., they are stateless) and serve only the script
script_fwd, except if they become corrupted.

• Each DNS server (in DNS) contains the assignment of domain names to IP addresses and answers DNS requests
accordingly.

Besides the browser, RPs, IdPs, and FWDs can become corrupted: If they receive the message CORRUPT, they start
collecting all incoming messages in their state and when triggered send out some message that is derivable from their
state and collected input messages, just like an attacker process.

6 Privacy of SPRESSO

In our privacy analysis, we show that an identity provider in SPRESSO cannot learn where its users log in. We formalize
this property as an indistinguishability property: an identity provider (modeled as a web attacker) cannot distinguish
between a user logging in at one relying party and the same user logging in at a different relying party.

Definition of Privacy of SPRESSO. The web systems considered for the privacy of SPRESSO are the web systems
SWS defined in Section 5 which now contain one or more web attackers, no network attackers, one honest DNS
server, one honest forwarder, one browser, and two honest relying parties r1 and r2. All honest parties may not become
corrupted and use the honest DNS server for address resolving. Identity providers are assumed to be dishonest, and
hence, are subsumed by the web attackers (which govern all identities). The web attacker subsumes also potentially
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dishonest forwarders, DNS servers, relying parties, and other servers. The honest relying parties are set up such that
they already contain the public signing keys (used to verify identity assertions) for each domain registered at the DNS
server, modeling that these have been cached by the relying parties, as discussed in Section 2.2.

In order to state the privacy property, we replace the (only) honest browser in the above described web systems
by a slightly extended browser, which we call a challenge browser: This browser may not become corrupted and is
parameterized by a domain r of a relying party. When it is to assemble an HTTP(S) request for the special domain
CHALLENGE, then instead of putting together and sending out the request for CHALLENGE it takes the domain r. However,
this is done only for the first request to CHALLENGE. Further requests to this domain are not altered (and would fail, as
the domain CHALLENGE is not listed in the honest DNS server).

We denote web systems as described above by SWS priv
(r), where r is the domain of the relying party given to the

challenge browser in this system.
We can now define privacy of SPRESSO. We note that it is not important which attacker process in SWS priv

(·) is
the distinguished one (in the sense of Section 4).

Definition 2. We say that SPRESSO is IdP-private iff for every web system SWS priv
(·) and domains r1 and r2 of

relying parties as described above, we have that SWS priv
(r1) ≈ SWS priv

(r2), i.e., SWS priv
(r1) and SWS priv

(r2) are
indistinguishable.

Note that there are many different situations where the honest browser in SWS priv
(·) could be triggered to send an

HTTP(S) request to CHALLENGE. This could, for example, be triggered by the user who enters a URL in the location
bar of the browser, a location header (e.g., determined by the adversary), an (attacker) script telling the browser to
follow a link or create an iframe, etc.

Now, the above definition requires that in every stage of a run and no matter how and by whom the CHALLENGE

request was triggered, no (malicious) IdP can tell whether CHALLENGE was replaced by r1 or r2, i.e., whether this
resulted in a login request for r1 or r2. Recall that the CHALLENGE request is replaced by the honest browser only once.
This is the only place in a run where the adversary does not know whether this is a request to r1 or r2. Other requests
in a run, even to both r1 and r2, the adversary can determine. Still, he should not be able to figure out what happened in
the CHALLENGE request. Hence, this definition captures in a strong sense the intuition that a malicious IdP should not
be able to distinguish whether a user logs in/has logged in at r1 or r2.

Analyzing Privacy of SPRESSO. The following theorem says that SPRESSO enjoys the described privacy definition.

Theorem 1. SPRESSO is IdP-private.

The full proof is provided in Appendix H. In the proof, we define an equivalence relation between configurations of
SWS priv

(r1) and SWS priv
(r2), comprising equivalences between states and equivalences between events (in the pool of

waiting events). For the states, for each (type of an) atomic DY process in the web system, we define how their states
are related. For example, the state of the FWD server must be identical in both configurations. As another example,
roughly speaking, the attacker’s state is the same up to subterms the attacker cannot decrypt. Regarding (waiting)
events, we distinguish between messages that result (directly or indirectly) from a CHALLENGE request by the browser
and other messages. While the challenged messages may differ in certain ways, other messages may only differ in parts
that the attacker cannot decrypt.

Given these equivalences, we then show by induction and an exhaustive case distinction that, starting from equiva-
lent configurations, every schedule leads to equivalent configurations. (We note that in SWS priv

(·) a schedule induces
a single run because in SWS priv

(·) we do not have non-deterministic actions that are not determined by a schedule:
honest servers and scripts perform only deterministic actions.) As an example, we distinguish between the potential
receivers of an event. If, e.g., FWD is a receiver of a message, given its identical state in both configurations (as per the
equivalence definition) and the equivalence on the input event, we can immediately show that the equivalence holds on
the output message and state. For other atomic DY processes, such as browsers and RPs, this is much harder to show.
For example, for browsers, we need to distinguish between the different scripts that can potentially run in the browser
(including the attacker script), the origins under which these scripts run, and the actions they can perform.

For equivalent configurations of SWS priv
(r1) and SWS priv

(r2), we show that the attacker’s views are indistinguish-
able. Given that for all SWS priv

(r1) and SWS priv
(r2) every schedule leads to equivalent configurations, we have that

SPRESSO is IdP-private.
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7 Authentication of SPRESSO

We show that SPRESSO satisfies two fundamental authentication properties.

Formal Model of SPRESSO for Authentication. For the authentication analysis, we consider web systems as defined
in Section 5 which now contain one network attacker, a finite set of browsers, a finite set of relying parties, a finite set
of identity providers, and a finite set of forwarders. Browsers, forwarders, and relying parties can become corrupted by
the network attacker. The network attacker subsumes all web attackers and also acts as a (dishonest) DNS server to all
other parties. We denote a web system in this class of web systems by SWS auth.

Defining Authentication for SPRESSO. We state two fundamental authentication properties every SSO system should
satisfy. These properties are adapted from [10].

Informally, these properties can be stated as follows: (A) The attacker should not be able to use a service of an
honest RP as an honest user. In other words, the attacker should not get hold of (be able to derive from his current
knowledge) a service token issued by an honest RP for an ID of an honest user (browser), even if the browser was
closed and then later used by a malicious user, i.e., after a CLOSECORRUPT (see Section 3.3). (B) The attacker should
not be able to authenticate an honest browser to an honest RP with an ID that is not owned by the browser (identity
injection). For both properties, we clearly have to require that the forwarder used by the honest RP is honest as well.

We call a web system SWS auth secure w.r.t. authentication if the above conditions are satisfied in all runs of the
system. We refer the reader to Appendix E for the formal definition of (A) and (B).

Analyzing Authentication of SPRESSO. We prove the following theorem:

Theorem 2. Let SWS auth be an SPRESSO web system as defined above. Then SWS auth is secure w.r.t. authentication.

In other words, the authentication properties (A) and (B) are fulfilled for every SPRESSO web system.
For the proof, we first show some general properties of SWS auth. In particular, we show that encrypted commu-

nication over HTTPS between an honest relying party and an honest IdP cannot be altered by the (network) attacker,
and, based on that, any honest relying party always retrieves the “correct” public signature verification key from honest
IdPs. We then proceed to show that for a service token to be issued by an honest RP, a request of a specific form has to
be received by the RP.

We then use these properties and the general web system properties shown in the full version of [12] to prove
properties (A) and (B) separately. In both cases, we assume that the respective property is not satisfied and lead this to
a contradiction. Again, the full proof is provided in Appendix F.

8 Further Related Work

As mentioned in the introduction, many SSO systems have been developed. However, unlike SPRESSO, none of them
is privacy-respecting.

Besides the design and implementation of SPRESSO, the formal analysis of this system based on an expressive web
model is an important part of our work. The formal treatment of the security of web applications is a young discipline.
Of the few works in this area even less are based on a general model that incorporates essential mechanisms of the web.
Early works in formal web security analysis (see, e.g., [3, 8, 16, 17, 25]) are based on very limited models developed
specifically for the application under scrutiny. The first work to consider a general model of the web, written in the
finite-state model checker Alloy, is the work by Akhawe et al. [2]. Inspired by this work, Bansal et al. [5,6] built a more
expressive model, called WebSpi, in ProVerif [7], a tool for symbolic cryptographic protocol analysis. These models
have successfully been applied to web standards and applications. Recently, Kumar [18] presented a high-level Alloy
model and applied it to SAML single sign-on. The web model presented in [10], which we further extend and refine
here, is the most comprehensive web model to date (see also the discussion in [10]). In fact, this is the only model
in which we can analyze SPRESSO. For example, other models do not incorporate a precise handling of windows,
documents, or iframes; cross-document messaging (postMessages) are not included at all.
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9 Conclusion

In this paper, we proposed the first privacy-respecting (web-based) SSO system, where the IdP cannot track at which
RP a user logs in. Our system, SPRESSO, is open and decentralized. Users can log in at any RP with any email address
with SPRESSO support, allowing for seamless and convenient integration into the usual login process. Being solely
based on standard HTML5 and web features, SPRESSO can be used across browsers, platforms, and devices.

We formally prove that SPRESSO indeed enjoys strong authentication and privacy properties. This is important
since, as discussed in the paper, numerous attacks on other SSO systems have been discovered. These attacks demon-
strate that designing a secure SSO system is non-trivial and security flaws can easily go undetected when no rigorous
analysis is carried out.

As mentioned in Section 8, there have been only very few analysis efforts, based on expressive models of the web
infrastructure, on web applications in general and SSO systems in particular in the literature so far. Therefore, the
analysis carried out in this paper is also of independent interest.

Our work is the first to analyze privacy properties based on an expressive web model, in fact the most expressive
model to date. The general indistinguishability/privacy definition we propose, which is not tailored to any specific web
application, will be useful beyond the analysis performed in this paper.
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A The Web Model

In this section, we present the model of the web infrastructure as proposed in [10] and [11], along with the following
changes and additions:

• The set of waiting events is replaced by a (infinite) sequence of waiting events. The sequence initially only contains
an infinite number of trigger events (interleaved by receiver). All new events output by processes are added in the
front of the sequence.

21

http://arxiv.org/abs/1411.7210
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749
https://login.persona.org
https://blog.mozilla.org/beyond-the-code/2013/04/09/persona-beta2/
https://spresso.me


• We write events as terms, i.e., (a: f :m) becomes 〈a, f ,m〉.
• E0 and E in runs/processing steps are now infinite sequences instead of multi-sets.
• In runs, the index of states and events (and nonces) are now written superscript (instead of subscript).
• For atomic DY processes, we replace the set of output messages by a sequence term (as defined in the equational

theory) of the form 〈〈a, f ,m〉,〈a′, f ′,m′〉, . . .〉. Each time such a sequence is output by any DY process, its elements
are prepended to the sequence of waiting events.
• We introduce a global sequence of nonces (n1,n2, . . .). Whenever any DY process outputs special placeholders
ν1,ν2, . . . (in its state or output messages), these placeholders are replaced by freshly chosen nonces from the
global set of nonces.
• A similar approach applies to scripts (running inside browsers). Instead of receiving and using a fresh set of nonces

each time they are called by the browser, scripts now get no dedicated set of nonces as inputs, but instead may
output operators µ1,µ2, . . . . After the script run has finished, these are replaced by “fresh” ν placeholders by the
browser (i.e., ν placeholders the browser itself does not use otherwise.)
• We therefore remove the sets of nonces from DY processes.
• We remove the function symbol extractmsg(·) which extracted the signed term from a signature. Instead, we added

a new function symbol checksig(·, ·, ·) that checks that a given term was signed.
• For an accurate privacy analysis, we introduce the Referer13 header and associated document property. We also

introduce the location document property.
• For the script command for following a link (HREF) we add the option to avoid sending the referer header (as a

model for the rel="noreferrer" attribute for links in HTML5).14

• DNS responses now not only contain the IP address of the domain for which the DNS request was sent, but also
the domain itself. This is a more realistic model.

A.1 Communication Model

We here present details and definitions on the basic concepts of the communication model.

Terms, Messages and Events The signature Σ for the terms and messages considered in this work is the union of the
following pairwise disjoint sets of function symbols:

• constants C = IPs ∪ S∪{>,⊥,♦} where the three sets are pairwise disjoint, S is interpreted to be the set of ASCII
strings (including the empty string ε), and IPs is interpreted to be a set of (IP) addresses,
• function symbols for public keys, (a)symmetric encryption/decryption, and signatures: pub(·), enca(·, ·), deca(·, ·),
encs(·, ·), decs(·, ·), sig(·, ·), checksig(·, ·), and extractmsg(·),
• n-ary sequences 〈〉,〈·〉,〈·, ·〉,〈·, ·, ·〉, etc., and
• projection symbols πi(·) for all i ∈ N.

For strings (elements in S), we use a specific font. For example, HTTPReq and HTTPResp are strings. We denote by
Doms ⊆ S the set of domains, e.g., example.com ∈ Doms. We denote by Methods ⊆ S the set of methods used in
HTTP requests, e.g., GET, POST ∈Methods.

The equational theory associated with the signature Σ is given in Figure 4.

Definition 3 (Nonces and Terms). By X = {x0,x1, . . .} we denote a set of variables and by N we denote an infinite
set of constants (nonces) such that Σ , X, and N are pairwise disjoint. For N ⊆N , we define the set TN(X) of terms
over Σ ∪N∪X inductively as usual: (1) If t ∈ N∪X, then t is a term. (2) If f ∈ Σ is an n-ary function symbol in Σ for
some n≥ 0 and t1, . . . , tn are terms, then f (t1, . . . , tn) is a term.

By ≡ we denote the congruence relation on TN (X) induced by the theory associated with Σ . For example, we have
that π1(deca(enca(〈a,b〉,pub(k)),k))≡ a.

13A spelling error in the early HTTP standards.
14Note that in practice, all major browsers except for the Internet Explorer support this property.
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deca(enca(x,pub(y)),y) = x (1)

decs(encs(x,y),y) = x (2)

checksig(sig(x,y),x,pub(y)) => (3)

πi(〈x1, . . . ,xn〉) = xi if 1≤ i≤ n (4)

π j(〈x1, . . . ,xn〉) = ♦ if j 6∈ {1, . . . ,n} (5)

Fig. 4. Equational theory for Σ .

Definition 4 (Ground Terms, Messages, Placeholders, Protomessages). By TN = TN( /0), we denote the set of all
terms over Σ ∪N without variables, called ground terms. The set M of messages (over N ) is defined to be the set of
ground terms TN .

We define the set Vprocess = {ν1,ν2, . . .} of variables (called placeholders). The set M ν := TN (Vprocess) is called
the set of protomessages, i.e., messages that can contain placeholders.

Example 1. For example, k ∈ N and pub(k) are messages, where k typically models a private key and pub(k) the
corresponding public key. For constants a, b, c and the nonce k ∈N , the message enca(〈a,b,c〉,pub(k)) is interpreted
to be the message 〈a,b,c〉 (the sequence of constants a, b, c) encrypted by the public key pub(k).

Definition 5 (Normal Form). Let t be a term. The normal form of t is acquired by reducing the function symbols
from left to right as far as possible using the equational theory shown in Figure 4. For a term t, we denote its normal
form as t↓.

Definition 6 (Pattern Matching). Let pattern ∈ TN ({∗}) be a term containing the wildcard (variable ∗). We say that
a term t matches pattern iff t can be acquired from pattern by replacing each occurrence of the wildcard with an
arbitrary term (which may be different for each instance of the wildcard). We write t ∼ pattern.

For a term t ′ we write t ′|pattern to denote the term that is acquired from t ′ by removing all immediate subterms of
t ′ that do not match pattern.

Example 2. For example, for a pattern p = 〈>,∗〉 we have that 〈>,42〉 ∼ p, 〈⊥,42〉 6∼ p, and

〈〈⊥,>〉,〈>,23〉,〈a,b〉,〈>,⊥〉〉| p = 〈〈>,23〉,〈>,⊥〉〉 .

Definition 7 (Variable Replacement). Let N ⊆N , τ ∈ TN({x1, . . . ,xn}), and t1, . . . , tn ∈ TN . By τ [t1/x1, . . . , tn/xn] we
denote the (ground) term obtained from τ by replacing all occurrences of xi in τ by ti, for all i ∈ {1, . . . ,n}.

Definition 8 (Events and Protoevents). An event (over IPs and M ) is a term of the form 〈a, f ,m〉, for a, f ∈ IPs and
m ∈M , where a is interpreted to be the receiver address and f is the sender address. We denote by E the set of all
events. Events over IPs and M ν are called protoevents and are denoted Eν . By 2E〈〉 (or 2Eν 〈〉, respectively) we denote
the set of all sequences of (proto)events, including the empty sequence (e.g., 〈〉, 〈〈a, f ,m〉,〈a′, f ′,m′〉, . . .〉, etc.).

Atomic Processes, Systems and Runs
An atomic process takes its current state and an event as input, and then (non-deterministically) outputs a new state

and a set of events.

Definition 9 (Generic Atomic Processes and Systems). A (generic) atomic process is a tuple p = (Ip,Zp,Rp,sp
0)

where Ip ⊆ IPs, Zp ∈ TN is a set of states, Rp ⊆ (E ×Zp)× (2Eν 〈〉×TN (Vprocess)) (input event and old state map to
sequence of output events and new state), and sp

0 ∈ Zp is the initial state of p. For any new state s and any sequence of
nonces (η1,η2, . . .) we demand that s[η1/ν1,η2/ν2, . . . ] ∈ Zp. A system P is a (possibly infinite) set of atomic processes.

Definition 10 (Configurations). A configuration of a system P is a tuple (S,E,N) where the state of the system S maps
every atomic process p ∈ P to its current state S(p) ∈ Zp, the sequence of waiting events E is an infinite sequence15

(e1,e2, . . .) of events waiting to be delivered, and N is an infinite sequence of nonces (n1,n2, . . .).

15Here: Not in the sense of terms as defined earlier.
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Definition 11 (Concatenating sequences). For a term a = 〈a1, . . . ,ai〉 and a sequence b = (b1,b2, . . .), we define the
concatenation as a ·b := (a1, . . . ,ai,b1,b2, . . .).

Definition 12 (Subtracting from Sequences). For a sequence X and a set or sequence Y we define X \Y to be the
sequence X where for each element in Y , a non-deterministically chosen occurence of that element in X is removed.

Definition 13 (Processing Steps). A processing step of the system P is of the form

(S,E,N)
ein→p−−−−→
p→Eout

(S′,E ′,N′)

where

1. (S,E,N) and (S′,E ′,N′) are configurations of P ,
2. ein = 〈a, f ,m〉 ∈ E is an event,
3. p ∈ P is a process,
4. Eout is a sequence (term) of events

such that there exists

1. a sequence (term) Eν
out ⊆ 2Eν 〈〉 of protoevents,

2. a term sν ∈ TN (Vprocess),
3. a sequence (v1,v2, . . . ,vi) of all placeholders appearing in Eν

out (ordered lexicographically),
4. a sequence Nν = (η1,η2, . . . ,ηi) of the first i elements in N

with

1. ((ein,S(p)),(Eν
out,s

ν)) ∈ Rp and a ∈ Ip,
2. Eout = Eν

out[m1/v1, . . . ,mi/vi]
3. S′(p) = sν [m1/v1, . . . ,mi/vi] and S′(p′) = S(p′) for all p′ 6= p
4. E ′ = Eout · (E \{ein})
5. N′ = N \Nν

We may omit the superscript and/or subscript of the arrow.

Intuitively, for a processing step, we select one of the processes in P , and call it with one of the events in the list of
waiting events E. In its output (new state and output events), we replace any occurences of placeholders νx by “fresh”
nonces from N (which we then remove from N). The output events are then prepended to the list of waiting events, and
the state of the process is reflected in the new configuration.

Definition 14 (Runs). Let P be a system, E0 be sequence of events, and N0 be a sequence of nonces. A run ρ of a system
P initiated by E0 with nonces N0 is a finite sequence of configurations ((S0,E0,N0), . . . ,(Sn,En,Nn)) or an infinite
sequence of configurations ((S0,E0,N0), . . .) such that S0(p) = sp

0 for all p ∈ P and (Si,E i,Ni)−→ (Si+1,E i+1,Ni+1)
for all 0≤ i< n (finite run) or for all i≥ 0 (infinite run).

We denote the state Sn(p) of a process p at the end of a run ρ by ρ(p).

Usually, we will initiate runs with a set E0 that contains infinite trigger events of the form 〈a,a,TRIGGER〉 for each
a ∈ IPs, interleaved by address.

Atomic Dolev-Yao Processes We next define atomic Dolev-Yao processes, for which we require that the messages
and states that they output can be computed (more formally, derived) from the current input event and state. For this
purpose, we first define what it means to derive a message from given messages.

Definition 15 (Deriving Terms). Let M be a set of ground terms. We say that a term m can be derived from M with
placeholders V if there exist n ≥ 0, m1, . . . ,mn ∈M, and τ ∈ T /0({x1, . . . ,xn}∪V ) such that m ≡ τ [m1/x1, . . . ,mn/xn].
We denote by dV (M) the set of all messages that can be derived from M with variables V .

For example, a ∈ d{}({enca(〈a,b,c〉,pub(k)),k}).
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Definition 16 (Atomic Dolev-Yao Process). An atomic Dolev-Yao process (or simply, a DY process) is a tuple
p = (Ip,Zp, Rp,sp

0) such that (Ip,Zp,Rp,sp
0) is an atomic process and (1) Zp ⊆ TN (and hence, sp

0 ∈ TN ), and (2) for
all events e ∈ E , sequences of protoevents E, s ∈ TN , s′ ∈ TN (Vprocess), with ((e,s),(E,s′)) ∈ Rp it holds true that E,
s′ ∈ dVprocess({e,s}).

Definition 17 (Atomic Attacker Process). An (atomic) attacker process for a set of sender addresses A ⊆ IPs is an
atomic DY process p= (I,Z,R,s0) such that for all events e, and s∈ TN we have that ((e,s),(E,s′))∈ R iff s′ = 〈e,E,s〉
and E = 〈〈a1, f1,m1〉, . . . ,〈an, fn,mn〉〉 with n ∈ N, a1, . . . ,an ∈ IPs, f0, . . . , fn ∈ A, m1, . . . ,mn ∈ dVprocess({e,s}).

A.2 Scripting Processes

We define scripting processes, which model client-side scripting technologies, such as JavaScript. Scripting processes
are defined similarly to DY processes.

Definition 18 (Placeholders for Scripting Processes). By Vscript = {λ1, . . .} we denote an infinite set of variables
used in scripting processes.

Definition 19 (Scripting Processes). A scripting process (or simply, a script) is a relation R⊆ TN ×TN (Vscript) such
that for all s ∈ TN , s′ ∈ TN (Vscript) with (s,s′) ∈ R it follows that s′ ∈ dVscript(s).

A script is called by the browser which provides it with state information (such as the script’s last state and limited
information about the browser’s state) s. The script then outputs a term s′, which represents the new internal state and
some command which is interpreted by the browser. The term s′ may contain variables λ1, . . . which the browser will
replace by (otherwise unused) placeholders ν1, . . . which will be replaced by nonces once the browser DY process
finishes (effectively providing the script with a way to get “fresh” nonces).

Similarly to an attacker process, we define the attacker script Ratt:

Definition 20 (Attacker Script). The attacker script Ratt outputs everything that is derivable from the input, i.e.,
Ratt = {(s,s′) | s ∈ TN ,s′ ∈ dVscript(s)}.

A.3 Web System

The web infrastructure and web applications are formalized by what is called a web system. A web system contains,
among others, a (possibly infinite) set of DY processes, modeling web browsers, web servers, DNS servers, and
attackers (which may corrupt other entities, such as browsers).

Definition 21. A web system WS = (W,S ,script,E0) is a tuple with its components defined as follows:
The first component, W, denotes a system (a set of DY processes) and is partitioned into the sets Hon, Web, and

Net of honest, web attacker, and network attacker processes, respectively.
Every p ∈Web∪Net is an attacker process for some set of sender addresses A⊆ IPs. For a web attacker p ∈Web,

we require its set of addresses Ip to be disjoint from the set of addresses of all other web attackers and honest processes,
i.e., Ip ∩ Ip′ = /0 for all p′ ∈ Hon∪Web. Hence, a web attacker cannot listen to traffic intended for other processes.
Also, we require that A = Ip, i.e., a web attacker can only use sender addresses it owns. Conversely, a network attacker
may listen to all addresses (i.e., no restrictions on Ip) and may spoof all addresses (i.e., the set A may be IPs).

Every p ∈ Hon is a DY process which models either a web server, a web browser, or a DNS server, as further
described in the following subsections. Just as for web attackers, we require that p does not spoof sender addresses
and that its set of addresses Ip is disjoint from those of other honest processes and the web attackers.

The second component, S , is a finite set of scripts such that Ratt ∈ S . The third component, script, is an injective
mapping from S to S, i.e., by script every s ∈ S is assigned its string representation script(s).

Finally, E0 is an (infinite) sequence of events, containing an infinite number of events of the form 〈a,a,TRIGGER〉
for every a ∈

⋃
p∈W Ip.

A run of WS is a run of W initiated by E0.
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B Message and Data Formats

We now provide some more details about data and message formats that are needed for the formal treatment of the web
model and the analysis of BrowserID presented in the rest of the appendix.

B.1 Notations

Definition 22 (Sequence Notations). For a sequence t = 〈t1, . . . , tn〉 and a set s we use t ⊂〈〉 s to say that t1, . . . , tn ∈ s.
We define x ∈〈〉 t ⇐⇒ ∃i : ti = x . We write t +〈〉 y to denote the sequence 〈t1, . . . , tn,y〉. For a finite set M with
M = {m1, . . . ,mn} we use 〈M〉 to denote the term of the form 〈m1, . . . ,mn〉. (The order of the elements does not matter;
one is chosen arbitrarily.)

Definition 23. A dictionary over X and Y is a term of the form

〈〈k1,v1〉, . . . ,〈kn,vn〉〉

where k1, . . . ,kn ∈ X, v1, . . . ,vn ∈ Y , and the keys k1, . . . ,kn are unique, i.e., ∀i 6= j : ki 6= k j. We call every term 〈ki,vi〉,
i∈ {1, . . . ,n}, an element of the dictionary with key ki and value vi. We often write [k1 : v1, . . . ,ki : vi, . . . ,kn : vn] instead
of 〈〈k1,v1〉, . . . ,〈kn,vn〉〉. We denote the set of all dictionaries over X and Y by [X×Y ].

We note that the empty dictionary is equivalent to the empty sequence, i.e., [] = 〈〉. Figure 5 shows the short no-
tation for dictionary operations that will be used when describing the browser atomic process. For a dictionary
z = [k1 : v1,k2 : v2, . . . ,kn : vn] we write k ∈ z to say that there exists i such that k = ki. We write z[k j] := v j to ex-
tract elements. If k 6∈ z, we set z[k] := 〈〉.

[k1 : v1, . . . ,ki : vi, . . . ,kn : vn] [ki] = vi (6)

[k1 : v1, . . . ,ki−1 : vi−1,ki : vi,ki+1 : vi+1 . . . ,kn : vn]− ki =

[k1 : v1, . . . ,ki−1 : vi−1,ki+1 : vi+1 . . . ,kn : vn] (7)

Fig. 5. Dictionary operators with 1≤ i≤ n.

Given a term t = 〈t1, . . . , tn〉, we can refer to any subterm using a sequence of integers. The subterm is determined
by repeated application of the projection πi for the integers i in the sequence. We call such a sequence a pointer:

Definition 24. A pointer is a sequence of non-negative integers. We write τ .p for the application of the pointer p to the
term τ . This operator is applied from left to right. For pointers consisting of a single integer, we may omit the sequence
braces for brevity.

Example 3. For the term τ = 〈a,b,〈c,d,〈e, f 〉〉〉 and the pointer p = 〈3,1〉, the subterm of τ at the position p is
c = π1(π3(τ)). Also, τ .3.〈3,1〉= τ .3.p = τ .3.3.1 = e.

To improve readability, we try to avoid writing, e.g., o.2 or π2(o) in this document. Instead, we will use the names
of the components of a sequence that is of a defined form as pointers that point to the corresponding subterms. E.g., if
an Origin term is defined as 〈host,protocol〉 and o is an Origin term, then we can write o.protocol instead of π2(o)
or o.2. See also Example 4.

B.2 URLs

Definition 25. A URL is a term of the form 〈URL,protocol,host,path,parameters〉 with protocol ∈ {P,S} (for plain
(HTTP) and secure (HTTPS)), host ∈ Doms, path ∈ S and parameters ∈

[
S×TN

]
. The set of all valid URLs is URLs.

Example 4. For the URL u = 〈URL,a,b,c,d〉, u.protocol= a. If, in the algorithm described later, we say u.path := e
then u = 〈URL,a,b,c,e〉 afterwards.
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B.3 Origins

Definition 26. An origin is a term of the form 〈host,protocol〉 with host ∈ Doms and protocol ∈ {P,S}. We write
Origins for the set of all origins.

Example 5. For example, 〈FOO,S〉 is the HTTPS origin for the domain FOO, while 〈BAR,P〉 is the HTTP origin for the
domain BAR.

B.4 Cookies

Definition 27. A cookie is a term of the form 〈name,content〉 where name ∈ TN , and content is a term of the form
〈value,secure,session,httpOnly〉 where value ∈ TN , secure, session, httpOnly ∈ {>,⊥}. We write Cookies for the set
of all cookies and Cookiesν for the set of all cookies where names and values are defined over TN (V ).

If the secure attribute of a cookie is set, the browser will not transfer this cookie over unencrypted HTTP connections.
If the session flag is set, this cookie will be deleted as soon as the browser is closed. The httpOnly attribute controls
whether JavaScript has access to this cookie.

Note that cookies of the form described here are only contained in HTTP(S) requests. In responses, only the
components name and value are transferred as a pairing of the form 〈name,value〉.

B.5 HTTP Messages

Definition 28. An HTTP request is a term of the form shown in (8). An HTTP response is a term of the form shown in
(9).

〈HTTPReq,nonce,method,host,path,parameters,headers,body〉 (8)
〈HTTPResp,nonce,status,headers,body〉 (9)

The components are defined as follows:

• nonce ∈N serves to map each response to the corresponding request
• method ∈Methods is one of the HTTP methods.
• host ∈ Doms is the host name in the HOST header of HTTP/1.1.
• path ∈ S is a string indicating the requested resource at the server side
• status ∈ S is the HTTP status code (i.e., a number between 100 and 505, as defined by the HTTP standard)
• parameters ∈

[
S×TN

]
contains URL parameters

• headers ∈
[
S×TN

]
, containing request/response headers. The dictionary elements are terms of one of the follow-

ing forms:
• 〈Origin,o〉 where o is an origin
• 〈Set-Cookie,c〉 where c is a sequence of cookies
• 〈Cookie,c〉 where c ∈

[
S×TN

]
(note that in this header, only names and values of cookies are transferred)

• 〈Location, l〉 where l ∈ URLs
• 〈Referer,r〉 where r ∈ URLs
• 〈Strict-Transport-Security,>〉

• body ∈ TN in requests and responses.

We write HTTPRequests/HTTPResponses for the set of all HTTP requests or responses, respectively.

Example 6 (HTTP Request and Response).

r :=〈HTTPReq,n1,POST,example.com,/show,〈〈index,1〉〉,
[Origin : 〈example.com,S〉],〈foo,bar〉〉 (10)

s :=〈HTTPResp,n1,200,〈〈Set-Cookie,〈〈SID,〈n2,⊥,⊥,>〉〉〉〉〉,〈somescript,x〉〉 (11)

An HTTP GET request for the URL http://example.com/show?index=1 is shown in (10), with an Origin header
and a body that contains 〈foo,bar〉. A possible response is shown in (11), which contains an httpOnly cookie with
name SID and value n2 as well as the string representation somescript of the scripting process script−1(somescript)
(which should be an element of S ) and its initial state x.
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Encrypted HTTP Messages. For HTTPS, requests are encrypted using the public key of the server. Such a request
contains an (ephemeral) symmetric key chosen by the client that issued the request. The server is supported to encrypt
the response using the symmetric key.

Definition 29. An encrypted HTTP request is of the form enca(〈m,k′〉,k), where k, k′ ∈N and m ∈ HTTPRequests.
The corresponding encrypted HTTP response would be of the form encs(m′,k′), where m′ ∈ HTTPResponses. We call
the sets of all encrypted HTTP requests and responses HTTPSRequests or HTTPSResponses, respectively.

Example 7.

enca(〈r,k′〉,pub(kexample.com)) (12)
encs(s,k′) (13)

The term (12) shows an encrypted request (with r as in (10)). It is encrypted using the public key pub(kexample.com).
The term (13) is a response (with s as in (11)). It is encrypted symmetrically using the (symmetric) key k′ that was sent
in the request (12).

B.6 DNS Messages

Definition 30. A DNS request is a term of the form 〈DNSResolve,domain,n〉 where domain ∈ Doms, n ∈N . We call
the set of all DNS requests DNSRequests.

Definition 31. A DNS response is a term of the form 〈DNSResolved,domain,result,n〉 with domain ∈Doms, result ∈
IPs, n ∈N . We call the set of all DNS responses DNSResponses.

DNS servers are supposed to include the nonce they received in a DNS request in the DNS response that they send
back so that the party which issued the request can match it with the request.

B.7 DNS Servers

Here, we consider a flat DNS model in which DNS queries are answered directly by one DNS server and always
with the same address for a domain. A full (hierarchical) DNS system with recursive DNS resolution, DNS caches,
etc. could also be modeled to cover certain attacks on the DNS system itself.

Definition 32. A DNS server d (in a flat DNS model) is modeled in a straightforward way as an atomic DY process
(Id ,{sd

0},Rd ,sd
0). It has a finite set of addresses Id and its initial (and only) state sd

0 encodes a mapping from domain
names to addresses of the form

sd
0 = 〈〈domain1,a1〉,〈domain2,a2〉, . . .〉 .

DNS queries are answered according to this table (otherwise ignored).

C Detailed Description of the Browser Model

Following the informal description of the browser model in Section 3.3, we now present a formal model. We start by
introducing some notation and terminology.

C.1 Notation and Terminology (Web Browser State)

Before we can define the state of a web browser, we first have to define windows and documents.

Definition 33. A window is a term of the form w = 〈nonce,documents,opener〉 with nonce ∈ N , documents ⊂〈〉
Documents (defined below), opener ∈ N ∪{⊥} where d.active = > for exactly one d ∈〈〉 documents if documents
is not empty (we then call d the active document of w). We write Windows for the set of all windows. We write
w.activedocument to denote the active document inside window w if it exists and 〈〉 else.
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We will refer to the window nonce as (window) reference.
The documents contained in a window term to the left of the active document are the previously viewed documents

(available to the user via the “back” button) and the documents in the window term to the right of the currently active
document are documents available via the “forward” button.

A window a may have opened a top-level window b (i.e., a window term which is not a subterm of a document
term). In this case, the opener part of the term b is the nonce of a, i.e., b.opener= a.nonce.

Definition 34. A document d is a term of the form

〈nonce, location,referrer,script,scriptstate,scriptinputs,subwindows,active〉

where nonce ∈ N , location ∈ URLs, referrer ∈ URLs ∪ {⊥}, script ∈ TN , scriptstate ∈ TN , scriptinputs ∈ TN ,
subwindows ⊂〈〉 Windows, active ∈ {>,⊥}. A limited document is a term of the form 〈nonce,subwindows〉 with
nonce, subwindows as above. A window w ∈〈〉 subwindows is called a subwindow (of d). We write Documents for the
set of all documents. For a document term d we write d.origin to denote the origin of the document, i.e., the term
〈d.location.host,d.location.protocol〉 ∈ Origins.

We will refer to the document nonce as (document) reference.
We can now define the set of states of web browsers. Note that we use the dictionary notation that we introduced in

Definition 23.

Definition 35. The set of states Zp of a web browser atomic process p consists of the terms of the form

〈windows, ids,secrets,cookies, localStorage,sessionStorage,keyMapping,

sts,DNSaddress,pendingDNS,pendingRequests, isCorrupted〉

where

• windows⊂〈〉Windows,
• ids⊂〈〉 TN ,
• secrets ∈ [Origins×N ],
• cookies is a dictionary over Doms and dictionaries of Cookies,
• localStorage ∈

[
Origins×TN

]
,

• sessionStorage ∈
[
OR×TN

]
for OR := {〈o,r〉|o ∈ Origins, r ∈N },

• keyMapping ∈
[
Doms×TN

]
,

• sts⊂〈〉 Doms,
• DNSaddress ∈ IPs,
• pendingDNS ∈

[
N ×TN

]
,

• pendingRequests ∈ TN ,
• and isCorrupted ∈ {⊥,FULLCORRUPT, CLOSECORRUPT}.

Definition 36. For two window terms w and w′ we write w
childof−−−→ w′ if

w ∈〈〉 w′.activedocument.subwindows .

We write
childof+−−−−→ for the transitive closure.

In the following description of the web browser relation Rp we will use the helper functions Subwindows, Docs,
Clean, CookieMerge and AddCookie.

Given a browser state s, Subwindows(s) denotes the set of all pointers16 to windows in the window list s.windows,
their active documents, and (recursively) the subwindows of these documents. We exclude subwindows of inactive
documents and their subwindows. With Docs(s) we denote the set of pointers to all active documents in the set of
windows referenced by Subwindows(s).

16Recall the definition of a pointer in Definition 24.
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Definition 37. For a browser state s we denote by Subwindows(s) the minimal set of pointers that satisfies the fol-
lowing conditions: (1) For all windows w ∈〈〉 s.windows there is a p ∈ Subwindows(s) such that s.p = w. (2) For
all p ∈ Subwindows(s), the active document d of the window s.p and every subwindow w of d there is a pointer
p′ ∈ Subwindows(s) such that s.p′ = w.

Given a browser state s, the set Docs(s) of pointers to active documents is the minimal set such that for every
p ∈ Subwindows(s), there is a pointer p′ ∈ Docs(s) with s.p′ = s.p.activedocument.

By Subwindows+(s) and Docs+(s) we denote the respective sets that also include the inactive documents and their
subwindows.

The function Clean will be used to determine which information about windows and documents the script running
in the document d has access to.

Definition 38. Let s be a browser state and d a document. By Clean(s,d) we denote the term that equals s.windows but
with all inactive documents removed (including their subwindows etc.) and all subterms that represent non-same-origin
documents w.r.t. d replaced by a limited document d′ with the same nonce and the same subwindow list. Note that
non-same-origin documents on all levels are replaced by their corresponding limited document.

The function CookieMerge merges two sequences of cookies together: When used in the browser, oldcookies is the
sequence of existing cookies for some origin, newcookies is a sequence of new cookies that was output by some script.
The sequences are merged into a set of cookies using an algorithm that is based on the Storage Mechanism algorithm
described in RFC6265.

Definition 39. For a sequence of cookies (with pairwise different names) oldcookies and a sequence of cookies
newcookies, the set CookieMerge(oldcookies,newcookies) is defined by the following algorithm: From newcookies
remove all cookies c that have c.content.httpOnly ≡ >. For any c, c′ ∈〈〉 newcookies, c.name ≡ c′.name, remove
the cookie that appears left of the other in newcookies. Let m be the set of cookies that have a name that either
appears in oldcookies or in newcookies, but not in both. For all pairs of cookies (cold,cnew) with cold ∈〈〉 oldcookies,
cnew ∈〈〉 newcookies, cold.name≡ cnew.name, add cnew to m if cold.content.httpOnly≡⊥ and add cold to m otherwise.
The result of CookieMerge(oldcookies,newcookies) is m.

The function AddCookie adds a cookie c received in an HTTP response to the sequence of cookies contained in the
sequence oldcookies. It is again based on the algorithm described in RFC6265 but simplified for the use in the browser
model.

Definition 40. For a sequence of cookies (with pairwise different names) oldcookies and a cookie c, the sequence
AddCookie(oldcookies,c) is defined by the following algorithm: Let m := oldcookies. Remove any c′ from m that has
c.name≡ c′.name. Append c to m and return m.

The function NavigableWindows returns a set of windows that a document is allowed to navigate. We closely
follow [15], Section 5.1.4 for this definition.

Definition 41. The set NavigableWindows(w,s′) is the set W ⊆ Subwindows(s′) of pointers to windows that the active
document in w is allowed to navigate. The set W is defined to be the minimal set such that for every w′ ∈ Subwindows(s′)
the following is true:

• If s′.w′.activedocument.origin ≡ s′.w.activedocument.origin (i.e., the active documents in w and w′ are
same-origin), then w′ ∈W, and

• If s′.w
childof∗−−−−→ s′.w′ ∧ @w′′ ∈ Subwindows(s′) with s′.w′

childof∗−−−−→ s′.w′′ (w′ is a top-level window and w is an
ancestor window of w′), then w′ ∈W, and

• If ∃ p ∈ Subwindows(s′) such that s′.w′
childof+−−−−→ s′.p

∧ s′.p.activedocument.origin= s′.w.activedocument.origin (w′ is not a top-level window but there is an
ancestor window p of w′ with an active document that has the same origin as the active document in w), then
w′ ∈W, and
• If ∃ p ∈ Subwindows(s′) such that s′.w′.opener = s′.p.nonce ∧ p ∈W (w′ is a top-level window—it has an

opener—and w is allowed to navigate the opener window of w′, p), then w′ ∈W.
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C.2 Description of the Web Browser Atomic Process

We will now describe the relation Rp of a standard HTTP browser p. We define ((〈〈a, f ,m〉〉,s) ,(M,s′)) to belong to
Rp iff the non-deterministic algorithm presented below, when given (〈a, f ,m〉,s) as input, terminates with stop M, s′,
i.e., with output M and s′. Recall that 〈a, f ,m〉 is an (input) event and s is a (browser) state, M is a sequence of (output)
protoevents, and s′ is a new (browser) state (potentially with placeholders for nonces).
Notations. The notation let n← N is used to describe that n is chosen non-deterministically from the set N. We write
for each s ∈M do to denote that the following commands (until end for) are repeated for every element in M, where
the variable s is the current element. The order in which the elements are processed is chosen non-deterministically.
We will write, for example,

let x,y such that 〈Constant,x,y〉 ≡ t if possible; otherwise doSomethingElse

for some variables x,y, a string Constant, and some term t to express that x := π2(t), and y := π3(t) if Constant≡
π1(t) and if |〈Constant,x,y〉|= |t|, and that otherwise x and y are not set and doSomethingElse is executed.
Placeholders. In several places throughout the algorithms presented next we use placeholders to generate “fresh”
nonces as described in our communication model (see Definition 3). Figure 6 shows a list of all placeholders used.

Placeholder Usage

ν1 Algorithm 7, new window nonces
ν2 Algorithm 7, new HTTP request nonce
ν3 Algorithm 7, lookup key for pending HTTP requests entry
ν4 Algorithm 5, new HTTP request nonce (multiple lines)
ν5 Algorithm 5, new subwindow nonce
ν6 Algorithm 6, new HTTP request nonce
ν7 Algorithm 6, new document nonce
ν8 Algorithm 4, lookup key for pending DNS entry
ν9 Algorithm 1, new window nonce
ν10, . . . Algorithm 5, replacement for placeholders in scripting process output

Fig. 6. List of placeholders used in browser algorithms.

Before we describe the main browser algorithm, we first define some functions.

Functions. In the description of the following functions we use a, f , m, and s as read-only global input variables. All
other variables are local variables or arguments.

The following function, GETNAVIGABLEWINDOW, is called by the browser to determine the window that is
actually navigated when a script in the window s′.w provides a window reference for navigation (e.g., for opening a
link). When it is given a window reference (nonce) window, GETNAVIGABLEWINDOW returns a pointer to a selected
window term in s′:

• If window is the string _BLANK, a new window is created and a pointer to that window is returned.
• If window is a nonce (reference) and there is a window term with a reference of that value in the windows in s′, a

pointer w′ to that window term is returned, as long as the window is navigable by the current window’s document
(as defined by NavigableWindows above).

In all other cases, w is returned instead (the script navigates its own window).

Algorithm 1 Determine window for navigation.

1: function GETNAVIGABLEWINDOW(w, window, noreferrer, s′)
2: if window≡ _BLANK then . Open a new window when _BLANK is used
3: if noreferrer ≡⊥ then
4: let w′ := 〈ν9,〈〉,s′.w.nonce〉
5: else
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6: let w′ := 〈ν9,〈〉,⊥〉
7: end if
8: let s′.windows := s′.windows +〈〉 w′ and let w′ be a pointer to this new element in s′

9: return w′

10: end if
11: let w′ ← NavigableWindows(w,s′) such that s′.w′.nonce≡ window if possible; otherwise return w
12: return w′

13: end function
The following function takes a window reference as input and returns a pointer to a window as above, but it checks

only that the active documents in both windows are same-origin. It creates no new windows.

Algorithm 2 Determine same-origin window.

1: function GETWINDOW(w, window, s′)
2: let w′ ← Subwindows(s′) such that s′.w′.nonce≡ window if possible; otherwise return w
3: if s′.w′.activedocument.origin≡ s′.w.activedocument.origin then
4: return w′

5: end if
6: return w
7: end function

The next function is used to stop any pending requests for a specific window. From the pending requests and pending
DNS requests it removes any requests with the given window reference n.

Algorithm 3 Cancel pending requests for given window.

1: function CANCELNAV(n, s′)
2: remove all 〈n,req,key, f 〉 from s′.pendingRequests for any req, key, f
3: remove all 〈x,〈n,message,protocol〉〉 from s′.pendingDNS for any x, message, protocol
4: return s′

5: end function
The following function takes an HTTP request message as input, adds cookie and origin headers to the message,

creates a DNS request for the hostname given in the request and stores the request in s′.pendingDNS until the DNS
resolution finishes. For normal HTTP requests, reference is a window reference. For XHRs, reference is a value of the
form 〈document,nonce〉 where document is a document reference and nonce is some nonce that was chosen by the
script that initiated the request. protocol is either P or S. origin is the origin header value that is to be added to the
HTTP request.

Algorithm 4 Prepare headers, do DNS resolution, save message.

1: function SEND(reference, message, protocol, origin, referrer, s′)
2: if message.host ∈〈〉 s′.sts then
3: let protocol := S

4: end if
5: let cookies := 〈{〈c.name,c.content.value〉|c ∈〈〉 s′.cookies [message.host]

↪→ ∧(c.content.secure =⇒ (protocol = S))}〉
6: let message.headers[Cookie] := cookies
7: if origin 6≡ ⊥ then
8: let message.headers[Origin] := origin
9: end if

10: if referrer 6≡ ⊥ then
11: let message.headers[Referer] := referrer
12: end if
13: let s′.pendingDNS[ν8] := 〈reference,message,protocol〉
14: stop 〈〈s′.DNSaddress,a,〈DNSResolve,host,n〉〉〉, s′

15: end function
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The function RUNSCRIPT performs a script execution step of the script in the document s′.d (which is part of the
window s′.w). A new script and document state is chosen according to the relation defined by the script and the new
script and document state is saved. Afterwards, the command that the script issued is interpreted.

Algorithm 5 Execute a script.

1: function RUNSCRIPT(w, d, s′)
2: let tree := Clean(s′,s′.d)
3: let cookies := 〈{〈c.name,c.content.value〉|c ∈〈〉 s′.cookies

[
s′.d.origin.host

]
↪→ ∧c.content.httpOnly=⊥
↪→ ∧

(
c.content.secure =⇒

(
s′.d.origin.protocol≡ S

))
}〉

4: let tlw← s′.windows such that tlw is the top-level window containing d
5: let sessionStorage := s′.sessionStorage

[
〈s′.d.origin, tlw.nonce〉

]
6: let localStorage := s′.localStorage

[
s′.d.origin

]
7: let secret := s′.secrets

[
s′.d.origin

]
8: let R← script−1(s′.d.script)
9: let in := 〈tree, s′.d.nonce,s′.d.scriptstate, s′.d.scriptinputs, cookies, localStorage, sessionStorage, s′.ids, secret〉

10: let state′ ← TN (V ),
↪→ cookies′← Cookiesν ,
↪→ localStorage′← TN (V ),
↪→ sessionStorage′← TN (V ),
↪→ command← TN (V ),
↪→ outλ := 〈state′,cookies′, localStorage′, sessionStorage′,command〉
↪→ such that (in,outλ) ∈ R

11: let out := outλ[ν10/λ1,ν11/λ2, . . . ]
12: let s′.cookies

[
s′.d.origin.host

]
:= 〈CookieMerge(s′.cookies

[
s′.d.origin.host

]
, cookies′)〉

13: let s′.localStorage
[
s′.d.origin

]
:= localStorage′

14: let s′.sessionStorage
[
〈s′.d.origin, tlw.nonce〉

]
:= sessionStorage′

15: let s′.d.scriptstate := state′

16: switch command do
17: case 〈HREF,url,hrefwindow,noreferrer〉
18: let w′ := GETNAVIGABLEWINDOW(w, hrefwindow, noreferrer, s′)
19: let req := 〈HTTPReq,ν4,GET,url.host,url.path,〈〉,url.parameters,〈〉〉
20: if noreferrer ≡⊥ then
21: let referrer := s′.d.location
22: else
23: let referrer := ⊥
24: end if
25: let s′ := CANCELNAV(s′.w′.nonce,s′)
26: SEND(s′.w′.nonce, req, url.protocol, ⊥, referrer, s′)
27: case 〈IFRAME,url,window〉
28: let w′ := GETWINDOW(w,window,s′)
29: let req := 〈HTTPReq,ν4,GET,url.host,url.path,〈〉,url.parameters,〈〉〉
30: let referrer := s′.w′.activedocument.location
31: let w′ := 〈ν5,〈〉,⊥〉
32: let s′.w′.activedocument.subwindows := s′.w′.activedocument.subwindows+〈〉w′

33: SEND(ν5, req, url.protocol, ⊥, referrer, s′)
34: case 〈FORM,url,method,data,hrefwindow〉
35: if method 6∈ {GET,POST} then 17

36: stop 〈〉, s′

37: end if
38: let w′ := GETNAVIGABLEWINDOW(w, hrefwindow, ⊥, s′)

17The working draft for HTML5 allowed for DELETE and PUT methods in HTML5 forms. However, these have since been
removed. See http://www.w3.org/TR/2010/WD-html5-diff-20101019/#changes-2010-06-24.
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39: if method = GET then
40: let body := 〈〉
41: let parameters := data
42: let origin := ⊥
43: else
44: let body := data
45: let parameters := url.parameters
46: let origin := s′.d.origin
47: end if
48: let req := 〈HTTPReq,ν4,method,url.host,url.path,〈〉,parameters,body〉
49: let referrer := s′.d.location
50: let s′ := CANCELNAV(s′.w′.nonce,s′)
51: SEND(s′.w′.nonce, req, url.protocol, origin, referrer, s′)
52: case 〈SETSCRIPT,window,script〉
53: let w′ := GETWINDOW(w,window,s′)
54: let s′.w′.activedocument.script := script
55: stop 〈〉, s′

56: case 〈SETSCRIPTSTATE,window,scriptstate〉
57: let w′ := GETWINDOW(w,window,s′)
58: let s′.w′.activedocument.scriptstate := scriptstate
59: stop 〈〉, s′

60: case 〈XMLHTTPREQUEST,url,method,data,xhrreference〉
61: if method ∈ {CONNECT,TRACE,TRACK}∧ xhrreference 6∈ {N ,⊥} then
62: stop 〈〉, s′

63: end if
64: if url.host 6≡ s′.d.origin.host ∨ url.protocol 6≡ s′.d.origin.protocol then
65: stop 〈〉, s′

66: end if
67: if method ∈ {GET,HEAD} then
68: let data := 〈〉
69: let origin := ⊥
70: else
71: let origin := s′.d.origin
72: end if
73: let req := 〈HTTPReq,ν4,method,url.host,url.path, ,url.parameters,data〉
74: let referrer := s′.d.location
75: SEND(〈s′.d.nonce,xhrreference〉, req, url.protocol, origin, referrer, s′)
76: case 〈BACK,window〉 18

77: let w′ := GETNAVIGABLEWINDOW(w, window, ⊥, s′)
78: if ∃ j ∈ N, j > 1 such that s′.w′.documents. j.active≡> then
79: let s′.w′.documents. j.active := ⊥
80: let s′.w′.documents.( j−1).active := >
81: let s′ := CANCELNAV(s′.w′.nonce,s′)
82: end if
83: stop 〈〉, s′

84: case 〈FORWARD,window〉
85: let w′ := GETNAVIGABLEWINDOW(w, window, ⊥, s′)
86: if ∃ j ∈ N such that s′.w′.documents. j.active≡> ∧ s′.w′.documents.( j+1) ∈Documents then
87: let s′.w′.documents. j.active := ⊥
88: let s′.w′.documents.( j+1).active := >
89: let s′ := CANCELNAV(s′.w′.nonce,s′)

18Note that navigating a window using the back/forward buttons does not trigger a reload of the affected documents. While real
world browser may chose to refresh a document in this case, we assume that the complete state of a previously viewed document is
restored. A reload can be triggered non-deterministically at any point (in the main algorithm).

34



90: end if
91: stop 〈〉, s′

92: case 〈CLOSE,window〉
93: let w′ := GETNAVIGABLEWINDOW(w, window, ⊥, s′)
94: remove s′.w′ from the sequence containing it
95: stop 〈〉, s′

96: case 〈POSTMESSAGE,window,message,origin〉
97: let w′ ← Subwindows(s′) such that s′.w′.nonce≡ window
98: if ∃ j ∈ N such that s′.w′.documents. j.active≡>

↪→ ∧(origin 6≡ ⊥ =⇒ s′.w′.documents. j.origin≡ origin) then
99: let s′.w′.documents. j.scriptinputs

↪→ := s′.w′.documents. j.scriptinputs
↪→ +〈〉 〈POSTMESSAGE,s′.w.nonce,s′.d.origin,message〉

100: end if
101: stop 〈〉, s′

102: case else
103: stop 〈〉, s′

104: end function
The function PROCESSRESPONSE is responsible for processing an HTTP response (response) that was received

as the response to a request (request) that was sent earlier. In reference, either a window or a document reference is
given (see explanation for Algorithm 4 above). Again, protocol is either P or S.

The function first saves any cookies that were contained in the response to the browser state, then checks whether
a redirection is requested (Location header). If that is not the case, the function creates a new document (for normal
requests) or delivers the contents of the response to the respective receiver (for XHR responses).

Algorithm 6 Process an HTTP response.

1: function PROCESSRESPONSE(response, reference, request, protocol, s′)
2: if Set-Cookie ∈ response.headers then
3: for each c ∈〈〉 response.headers [Set-Cookie], c ∈ Cookies do
4: let s′.cookies [request.url.host] := AddCookie(s′.cookies [request.url.host] ,c)
5: end for
6: end if
7: if Strict-Transport-Security ∈ response.headers ∧ protocol≡ S then
8: let s′.sts := s′.sts +〈〉 request.host
9: end if

10: if Referer ∈ request.headers then
11: let referrer := request.headers[Referer]
12: else
13: let referrer := ⊥
14: end if
15: if Location ∈ response.headers∧ response.status ∈ {303,307} then 19

16: let url := response.headers [Location]
17: let method′ := request.method 20

18: let body′ := request.body 21

19The RFC for HTTPbis (currently in draft status), which obsoletes RFC 2616, does not specify whether a POST/DELETE/etc.
request that was answered with a status code of 301 or 302 should be rewritten to a GET request or not (“for historic reasons” that
are detailed in Section 7.4.). As the specification is clear for the status codes 303 and 307 (and most browsers actually follow the
specification in this regard), we focus on modeling these.

20While the standard demands that users confirm redirections of non-safe-methods (e.g., POST), we assume that users generally
confirm these redirections.

21If, for example, a GET request is redirected and the original request contained a body, this body is preserved, as HTTP allows
for payloads in messages with all HTTP methods, except for the TRACE method (a detail which we omit). Browsers will usually
not send body payloads for methods that do not specify semantics for such data in the first place.
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19: if Origin ∈ request.headers then
20: let origin := 〈request.headers[Origin],〈request.host,protocol〉〉
21: else
22: let origin := ⊥
23: end if
24: if response.status≡ 303∧ request.method 6∈ {GET,HEAD} then
25: let method′ := GET

26: let body′ := 〈〉
27: end if
28: if @w ∈ Subwindows(s′) such that s′.w.nonce≡ reference then . Do not redirect XHRs.
29: stop 〈〉, s
30: end if
31: let req := 〈HTTPReq,ν6,method′,url.host,url.path,〈〉,url.parameters,body′〉
32: SEND(reference, req, url.protocol, origin, referrer, s′)
33: end if
34: if ∃w ∈ Subwindows(s′) such that s′.w.nonce≡ reference then . normal response
35: let location := 〈URL,protocol,request.host,request.path,request.parameters〉
36: if response.body 6∼ 〈∗,∗〉 then
37: stop {}, s′

38: end if
39: let script := π1(response.body)
40: let scriptstate := π2(response.body)
41: let d := 〈ν7, location,referrer,script,scriptstate,〈〉,〈〉,>〉
42: if s′.w.documents≡ 〈〉 then
43: let s′.w.documents := 〈d〉
44: else
45: let i← N such that s′.w.documents.i.active≡>
46: let s′.w.documents.i.active := ⊥
47: remove s′.w.documents.(i+1) and all following documents from s′.w.documents
48: let s′.w.documents := s′.w.documents +〈〉 d
49: end if
50: stop {}, s′

51: else if ∃w ∈ Subwindows(s′), d such that s′.d.nonce≡ π1(reference)
↪→ ∧ s′.d = s′.w.activedocument then . process XHR response

52: let s′.d.scriptinputs := s′.d.scriptinputs +〈〉 〈XMLHTTPREQUEST,response.body,π2(reference)〉
53: end if
54: end function

Main Algorithm. This is the main algorithm of the browser relation. It receives the message m as input, as well as a,
f and s as above.

Algorithm 7 Main Algorithm

Input: 〈a, f ,m〉,s
1: let s′ := s
2: if s.isCorrupted 6≡ ⊥ then
3: let s′.pendingRequests := 〈m,s.pendingRequests〉 . Collect incoming messages
4: let m′ ← dV (s′)
5: let a′ ← IPs
6: stop 〈〈a′,a,m′〉〉, s′

7: end if
8: if m≡ TRIGGER then . A special trigger message.
9: let switch← {1,2,3}

10: if switch≡ 1 then . Run some script.
11: let w← Subwindows(s′) such that s′.w.documents 6= 〈〉 if possible; otherwise stop 〈〉, s′

12: let d := w+〈〉 activedocument
13: RUNSCRIPT(w, d, s′)
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14: else if switch≡ 2 then . Create some new request.
15: let w′ := 〈ν1,〈〉,⊥〉
16: let s′.windows := s′.windows +〈〉 w′

17: let protocol← {P,S}
18: let host← Doms
19: let path← S
20: let parameters← [S×S]
21: let req := 〈HTTPReq,ν2,GET,host,path,〈〉,parameters,〈〉〉
22: SEND(ν1, req, protocol, ⊥, s′)
23: else if switch≡ 3 then . Reload some document.
24: let w← Subwindows(s′) such that s′.w.documents 6= 〈〉 if possible; otherwise stop 〈〉, s′

25: let url := s′.w.activedocument.location
26: let req := 〈HTTPReq,ν2,GET,url.host,url.path,〈〉,url.parameters,〈〉〉
27: let referrer := s′.w.activedocument.referrer
28: let s′ := CANCELNAV(s′.w.nonce,s′)
29: SEND(s′.w.nonce, req, url.protocol, ⊥, referrer, s′)
30: end if
31: else if m≡ FULLCORRUPT then . Request to corrupt browser
32: let s′.isCorrupted := FULLCORRUPT

33: stop 〈〉, s′

34: else if m≡ CLOSECORRUPT then . Close the browser
35: let s′.secrets := 〈〉
36: let s′.windows := 〈〉
37: let s′.pendingDNS := 〈〉
38: let s′.pendingRequests := 〈〉
39: let s′.sessionStorage := 〈〉
40: let s′.cookies⊂〈〉 Cookies such that (c ∈〈〉 s′.cookies)⇐⇒ (c ∈〈〉 s.cookies∧ c.content.session≡⊥)
41: let s′.isCorrupted := CLOSECORRUPT

42: stop 〈〉, s′

43: else if ∃〈reference,request,key, f 〉 ∈〈〉 s′.pendingRequests
↪→ such that π1(decs(m,key))≡ HTTPResp then . Encrypted HTTP response

44: let m′ := decs(m,key)
45: if m′.nonce 6≡ request.nonce then
46: stop 〈〉, s
47: end if
48: remove 〈reference,request,key, f 〉 from s′.pendingRequests
49: PROCESSRESPONSE(m′, reference, request, S, s′)
50: else if π1(m)≡ HTTPResp ∧ ∃〈reference,request,⊥, f 〉 ∈〈〉 s′.pendingRequests such that m′.nonce≡ request.key then
51: remove 〈reference,request,⊥, f 〉 from s′.pendingRequests
52: PROCESSRESPONSE(m, reference, request, P, s′)
53: else if m ∈DNSResponses then . Successful DNS response
54: if m.nonce 6∈ s.pendingDNS∨m.result 6∈ IPs∨m.domain 6≡ π2(s.pendingDNS).host then
55: stop 〈〉, s
56: end if
57: let 〈reference,message,protocol〉 := s.pendingDNS[m.nonce]
58: if protocol≡ S then
59: let s′.pendingRequests := s′.pendingRequests +〈〉 〈reference, message, ν3, m.result〉
60: let message := enca(〈message,ν3〉,s′.keyMapping [message.host])
61: else
62: let s′.pendingRequests := s′.pendingRequests +〈〉 〈reference, message, ⊥, m.result〉
63: end if
64: let s′.pendingDNS := s′.pendingDNS−m.nonce
65: stop 〈〈m.result,a,message〉〉, s′

66: end if
67: stop 〈〉, s
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D Formal Model of SPRESSO

We here present the full details of our formal model of SPRESSO. For our analysis regarding our authentication and
privacy properties below, we will further restrict this generic model to suit the setting of the respective analysis.

We model SPRESSO as a web system (in the sense of Appendix A.3). We call a web system SWS =
(W ,S ,script,E0) an SPRESSO web system if it is of the form described in what follows.

D.1 Outline

The system W = Hon∪Web∪Net consists of web attacker processes (in Web), network attacker processes (in
Net), a finite set FWD of forwarders, a finite set B of web browsers, a finite set RP of web servers for the relying
parties, a finite set IDP of web servers for the identity providers, and a finite set DNS of DNS servers, with Hon :=
B∪RP∪ IDP∪FWD∪DNS. More details on the processes in W are provided below. Figure 7 shows the set of scripts
S and their respective string representations that are defined by the mapping script. The set E0 contains only the trigger
events as specified in Appendix A.3.

s ∈ S script(s)

Ratt att_script
script_rp script_rp
script_rp_redir script_rp_redir
script_idp script_idp
script_fwd script_fwd

Fig. 7. List of scripts in S and their respective string representations.

This outlines SWS . We will now define the DY processes in SWS and their addresses, domain names, and secrets in
more detail. The scripts are defined in detail in Appendix D.16.

D.2 Addresses and Domain Names

The set IPs contains for every web attacker in Web, every network attacker in Net, every relying party in RP, every
identity provider in IDP, every forwarder in FWD, every DNS server in DNS, and every browser in B a finite set of
addresses each. By addr we denote the corresponding assignment from a process to its address. The set Doms contains
a finite set of domains for every forwarder FWD, every relying party in RP, every identity provider in IDP, every web
attacker in Web, and every network attacker in Net. Browsers (in B) and DNS servers (in DNS) do not have a domain.

By addr and dom we denote the assignments from atomic processes to sets of IPs and Doms, respectively.

D.3 Keys and Secrets

The set N of nonces is partitioned into four sets, an infinite sequence N, an infinite set KSSL, an infinite set Ksign, and a
finite set Secrets. We thus have

N = N︸︷︷︸
infinite sequence

∪̇KSSL︸︷︷︸
finite

∪̇Ksign︸︷︷︸
finite

∪̇Secrets︸ ︷︷ ︸
finite

.

The set N contains the nonces that are available for each DY process in W (it can be used to create a run of W ).
The set KSSL contains the keys that will be used for SSL encryption. Let sslkey : Doms→ KSSL be an injective

mapping that assigns a (different) private key to every domain.
The set Ksign contains the keys that will be used by IdPs for signing IAs. Let signkey : IdPs→ Ksign be an injective

mapping that assigns a (different) private key to every identity provider.
The set Secrets is the set of passwords (secrets) the browsers share with the identity providers.
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D.4 Identities

Indentites are email addresses, which consist of a user name and a domain part. For our model, this is defined as
follows:

Definition 42. An identity (email address) i is a term of the form 〈name,domain〉 with name ∈ S and domain ∈ Doms.
Let ID be the finite set of identities. By IDy we denote the set {〈name,domain〉 ∈ ID |domain ∈ dom(y)}.
We say that an ID is governed by the DY process to which the domain of the ID belongs. Formally, we define the

mapping governor : ID→W , 〈name,domain〉 7→ dom−1(domain).

The governor of an ID will usually be an IdP, but could also be the attacker.
By secretOfID : ID→ Secrets we denote the bijective mapping that assigns secrets to all identities.
Let ownerOfSecret : Secrets→ B denote the mapping that assigns to each secret a browser that owns this secret.

Now, we define the mapping ownerOfID : ID→ B, i 7→ ownerOfSecret(secretOfID(i)), which assigns to each identity
the browser that owns this identity (we say that the identity belongs to the browser).

D.5 Tags and Identity Assertions

Definition 43. A tag is a term of the form encs(〈o,n〉,k) for some domain d, a nonce n ∈N , and a nonce (here used
as a symmetric key) k.

Definition 44. An identity assertion (IA) is a term of the form sig(〈t,e,d′〉,k) for a tag t, an email address (identity)
e, a domain d′ and a nonce k. We call it an encrypted identity assertion (EIA) if it is additionally (symmmetrically)
encrypted (i.e., it is of the form encs(s,k′) if s is an IA and k′ is a nonce.

D.6 Corruption

RPs, IdPs and FWDs can become corrupted: If they receive the message CORRUPT, they start collecting all incoming
messages in their state and (upon triggering) send out all messages that are derivable from their state and collected
input messages, just like the attacker process. We say that an RP, an IdP or an forwarder is honest if the according part
of their state (s.corrupt) is ⊥, and that they are corrupted otherwise.

We are now ready to define the processes in W as well as the scripts in S in more detail.

D.7 Processes in W (Overview)

We first provide an overview of the processes in W . All processes in W (except for DNS servers) contain in their
initial states all public keys and the private keys of their respective domains (if any). We define Ip = addr(p) for all
p ∈ Hon∪Web.

Web Attackers. Each wa ∈Web is a web attacker (see Appendix A.3), who uses only his own addresses for sending
and listening.

Network Attackers. Each na ∈ Net is a network attacker (see Appendix A.3), who uses all addresses for sending and
listening.

Browsers. Each b ∈ B is a web browser as defined in Appendix C. The initial state contains all secrets owned by b,
stored under the origin of the respective IdP. See Appendix D.11 for details.

Relying Parties. A relying party r ∈ RP is a web server. RP knows four distinct paths: /, where it serves the index web
page (script_rp), /startLogin, where it only accepts POST requests and mainly issues a fresh RP nonce (details
see below), /redir, where it only accepts requests with a valid login session token and serves script_rp_redir to
redirect the browser to the IdP, and /login, where it also only accepts POST requests with login data obtained during
the login process by script_rp running in the browser. It checks this data and, if the data is deemed “valid”, it issues
a service token (again, for details, see below). The RP keeps a list of such tokens in its state. Intuitively, a client having
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such a token can use the service of the RP (for a specific identity record along with the token). Just like IdPs, RPs can
become corrupted.

Identity Providers. Each IdP is a web server. As outlined in Section 2.1, users can authenticate to the IdP with their
credentials. IdP tracks the state of the users with sessions. Authenticated users can receive IAs from the IdP. When
receiving a special message (CORRUPT) IdPs can become corrupted. Similar to the definition of corruption for the
browser, IdPs then start sending out all messages that are derivable from their state.

Forwarders. FWDs are web servers that have only one state and only serve the script script_fwd. See Appendix D.14
for details.

DNS. Each dns ∈ DNS is a DNS server as defined in Appendix B.7. Their state contains the allocation of domain
names to IP addresses.

D.8 SSL Key Mapping

Before we define the atomic DY processes in more detail, we first define the common data structure that holds the
mapping of domain names to public SSL keys: For an atomic DY process p we define

sslkeysp = 〈{〈d,sslkey(d)〉 | d ∈ dom(p)}〉.

D.9 Web Attackers

Each wa ∈Web is a web attacker. The initial state of each wa is swa
0 = 〈attdoms,sslkeys,signkeys〉, where attdoms is a

sequence of all domains along with the corresponding private keys owned by wa, sslkeys is a sequence of all domains
and the corresponding public keys, and signkeys is a sequence containing all public signing keys for all IdPs. All other
parties use the attacker as a DNS server.

D.10 Network Attackers

As mentioned, each network attacker na is modeled to be a network attacker as specified in Appendix A.3.
We allow it to listen to/spoof all available IP addresses, and hence, define Ina = IPs. The initial state is sna

0 =
〈attdoms,sslkeys,signkeys〉, where attdoms is a sequence of all domains along with the corresponding private keys
owned by the attacker na, sslkeys is a sequence of all domains and the corresponding public keys, and signkeys is a
sequence containing all public signing keys for all IdPs.

D.11 Browsers

Each b ∈ B is a web browser as defined in Appendix C, with Ib := addr(b) being its addresses.
To define the inital state, first let IDb := ownerOfID−1(b) be the set of all IDs of b, IDb,d := {i | ∃x : i = 〈x,d〉 ∈ IDb}

be the set of IDs of b for a domain d, and SecretDomainsb := {d | IDb,d 6= /0} be the set of all domains that b owns
identities for.

Then, the initial state sb
0 is defined as follows: the key mapping maps every domain to its public (ssl) key, according

to the mapping sslkey; the DNS address is addr(p) with p ∈W ; the list of secrets contains an entry 〈〈d,S〉,s〉 for each
d ∈ SecretDomainsb and s = secretOfID(i) for some i ∈ IDb,d (s is the same for all i); ids is 〈IDb〉; sts is empty.

D.12 Relying Parties

A relying party r ∈RP is a web server modeled as an atomic DY process (Ir,Zr,Rr,sr
0) with the addresses Ir := addr(r).

Its initial state sr
0 contains its domains, the private keys associated with its domains, the DNS server address, and the

domain name of a forwarder. The full state additionally contains the sets of service tokens and login session identifiers
the RP has issued. RP only accepts HTTPS requests.
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RP manages two kinds of sessions: The login sessions, which are only used during the login phase of a user, and the
service sessions (we call the session identifier of a service session a service token). Service sessions allow a user to use
RP’s services. The ultimate goal of a login flow is to establish such a service session.

In a typical flow with one client, r will first receive an HTTP GET request for the path /. In this case, r returns the
script script_rp (see below).

After the user entered her email address, r will receive an HTTPS POST XMLHTTPRequest for the path
/startLogin. In this request, it expects the email address the user entered. The relying party then contacts the
user’s email provider to retrieve the SPRESSO support document (where it extracts the public key of the IdP). After
that, r selects the nonces rpNonce, iaKey, tagKey, and loginSessionToken. It creates the tag as the (symmetric) encryp-
tion of its own domain and the rpNonce with tagKey. It then returns to the browser the loginSessionToken, the tagKey,
and the domain of the forwarder (S(r).FWDDomain).

When the RP document in the browser opens the login dialog, r receives a third request, in this case a GET request
for the path /redir with a parameter containing loginSessionToken. This is now used by r to look up the user’s session
and redirect the user to the IdP (this redirection serves mainly to hide the referer string from the request to IdP). For this,
r sends the script script_rp_redir and, in its initial script state, defines that the script should redirect the user to the URL
of the login dialog (which is “https://” plus the domain of the user’s email address plus “/.well-known/spresso-login”).

Finally, r receives a last request in the login flow. This POST request contains the encrypted IA and the
loginSessionToken. . To conclude the login, r looks up the user’s login session, decrypts the IA, and checks that
it is a signature over the tag, the user’s email address, and the FWD domain. If successful, r returns a new service token,
which is also stored in the state of r.

If r receives a corrupt message, it becomes corrupt and acts like the attacker from then on.
We now provide the formal definition of r as an atomic DY process (Ir,Zr,Rr,sr

0). As mentioned, we define Ir =
addr(r). Next, we define the set Zr of states of r and the initial state sr

0 of r.

Definition 45. A login session record is a term of the form 〈email,rpNonce, iaKey, tag〉 with email ∈ ID and rpNonce,
iaKey, tag ∈N .

Definition 46. A state s ∈ Zr of an RP r is a term of the form 〈DNSAddress, FWDDomain, keyMapping,
sslkeys, pendingDNS, pendingRequests, loginSessions, serviceTokens, wkCache, corrupt〉 where DNSAddress ∈ IPs,
FWDDomain ∈ Doms, keyMapping ∈ [S×N ], sslkeys = sslkeysr, pendingDNS ∈

[
N ×TN

]
, pendingRequests ∈[

N ×TN
]
, serviceTokens ∈ [N ×S], loginSessions ∈

[
N ×TN

]
is a dictionary of login session records, wkCache ∈[

S×TN
]
, corrupt ∈ TN .

The initial state sr
0 of r is a state of r with sr

0.serviceTokens = sr
0.loginSessions = sr

0.wkCache = 〈〉,
sr

0.corrupt=⊥, and sr
0.keyMapping is the same as the keymapping for browsers above.

We now specify the relation Rr. Just like in Appendix C, we describe this relation by a non-deterministic algorithm.

Algorithm 8 Sending the response to a startLogin XMLHTTPRequest

1: function SENDSTARTLOGINRESPONSE(a, f , k, n, email, inDomain, s′)
2: let rpNonce := ν1
3: let tagKey := ν2
4: let iaKey := ν3
5: let loginSessionToken := ν4
6: let tag := encs(〈inDomain,rpNonce〉, tagKey)
7: let s′.loginSessions[loginSessionToken] := 〈email,rpNonce, iaKey, tag〉
8: let body := 〈〈tagKey, tagKey〉〈loginSessionToken, loginSessionToken〉,〈FWDDomain,s′.FWDDomain〉〉
9: let m′ := encs(〈HTTPResp,n,200,〈〉,body〉,k)

10: stop 〈〈 f ,a,m′〉〉, s′

11: end function

Algorithm 9 Relation of a Relying Party Rr

Input: 〈a, f ,m〉,s
1: if s′.corrupt 6≡ ⊥∨m≡ CORRUPT then
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2: let s′.corrupt := 〈〈a, f ,m〉,s′.corrupt〉
3: let m′ ← dV (s′)
4: let a′ ← IPs
5: stop 〈〈a′,a,m′〉〉, s′

6: end if
7: if ∃〈reference,request,key, f 〉 ∈〈〉 s′.pendingRequests

↪→ such that π1(decs(m,key))≡ HTTPResp then . Encrypted HTTP response
8: let m′ := decs(m,key)
9: if m′.nonce 6≡ request.nonce then

10: stop 〈〉, s
11: end if
12: remove 〈reference,request,key, f 〉 from s′.pendingRequests
13: let a′, f ′, k, n, email, inDomain such that 〈a′, f ′,k,n,email, inDomain〉 ≡ reference if possible; otherwise stop 〈〉, s
14: let s′.wkCache[request.host] := m′.body
15: SENDSTARTLOGINRESPONSE(a′, f ′, k, n, email, inDomain, s′)
16: else if m ∈DNSResponses then . Successful DNS response
17: if m.nonce 6∈ s.pendingDNS∨m.result 6∈ IPs∨m.domain 6≡ π2(s.pendingDNS).host then
18: stop 〈〉, s
19: end if
20: let 〈reference,message〉 := s.pendingDNS[m.nonce]
21: let s′.pendingRequests := s′.pendingRequests

↪→ +〈〉 〈reference, message, ν5, m.result〉
22: let message := enca(〈message,ν5〉,s′.keyMapping [message.host])
23: let s′.pendingDNS := s′.pendingDNS−m.nonce
24: stop 〈〈m.result,a,message〉〉, s′

25: else . Handle HTTP requests
26: let mdec, k, k′, inDomain such that

↪→ 〈mdec,k〉 ≡ deca(m,k′)∧〈inDomain,k′〉 ∈ s.sslkeys
↪→ if possible; otherwise stop 〈〉, s

27: let n, method, path, parameters, headers, body such that
↪→ 〈HTTPReq,n,method, inDomain,path,parameters,headers,body〉 ≡ mdec
↪→ if possible; otherwise stop 〈〉, s

28: if path≡ / then . Serve index page.
29: let m′ := encs(〈HTTPResp,n,200,〈〉,〈script_rp, initStaterp〉〉,k) . Initial state defined for script_rp (below).
30: stop 〈〈 f ,a,m′〉〉, s′

31: else if path≡ /startLogin∧method ≡ POST then . Serve start login request.
32: if body 6∈ ids then
33: stop 〈〉, s
34: end if
35: let domain := body.domain
36: if domain ∈ s.wkCache then
37: SENDSTARTLOGINRESPONSE(a, f , k, n, body, inDomain, s′)
38: else
39: let message := 〈HTTPReq,ν6,GET,domain,/.well-known/spresso-info,〈〉,〈〉,〈〉〉
40: let s′.pendingDNS[ν6] := 〈〈a, f ,k,n,body, inDomain〉,message〉
41: stop 〈〈s′.DNSaddress,a,〈DNSResolve,domain,ν6〉〉〉, s′

42: end if
43: else if path≡ /redir∧method ≡ GET then . Serve redirection script.
44: let loginSession := s′.loginSessions[body[loginSessionToken]]
45: if loginSession≡ 〈〉 then
46: stop 〈〉, s
47: end if
48: let domain := loginSession.email.domain
49: let params := 〈〈email, loginSession.email〉,〈tag, loginSession.tag〉,

↪→ 〈iaKey, loginSession.iaKey〉,〈FWDDomain,s′.FWDDomain〉〉
50: let url := 〈URL,S,domain,/.well-known/spresso-login,params〉
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51: let m′ := encs(〈HTTPResp,n,200,〈〉,〈script_rp_redir,url〉〉,k)
52: stop 〈〈 f ,a,m′〉〉, s′

53: else if path≡ /login∧method ≡ POST then . Serve login request.
54: if headers[Origin] 6≡ 〈inDomain,S〉∨body[loginSessionToken]≡ 〈〉 then
55: stop 〈〉, s
56: end if
57: let loginSession := s′.loginSessions[body[loginSessionToken]]
58: if loginSession≡ 〈〉 then
59: stop 〈〉, s
60: end if
61: let s′.loginSessions := s′.loginSessions−body[loginSessionToken]
62: let ia := decs(body[eia], loginSession.iaKey)
63: let e := 〈loginSession.tag, loginSession.email,s′.FWDDomain〉
64: if checksig(e, ia,s′.wkCache[loginSession.email.domain][signkey])≡⊥ then
65: stop 〈〉, s
66: end if
67: let serviceTokenNonce := ν7
68: let serviceToken := 〈serviceTokenNonce, loginSession.email〉
69: let s′.serviceTokens := s′.serviceTokens +〈〉 serviceToken
70: let m′ := encs(〈HTTPResp,n,200,〈〉,serviceToken〉,k)
71: stop 〈〈 f ,a,m′〉〉, s′

72: end if
73: end if
74: stop 〈〉, s

D.13 Identity Providers

An identity provider i∈ IdPs is a web server modeled as an atomic process (Ii,Zi,Ri,si
0) with the addresses Ii := addr(i).

Its initial state si
0 contains a list of its domains and (private) SSL keys, a list of users and identites, and a private key

for signing UCs. Besides this, the full state of i further contains a list of used nonces, and information about active
sessions.

IdPs react to three types of requests:
First, they provide the “well-known document”, a machine-readable document which contains the IdP’s verification

key. This document is served upon a GET request to the path /.well-known/spresso-info.
Second, upon a request to the LD path (i.e., /.well-known/spresso-login), an IdP serves the login dialog script,

i.e., script_idp. Into the initial state of this script, IdPs encode whether the browser is already logged in or not.
Further, IdP issues an XSRF token to the browser (in the same way RPs do).

The login dialog will eventually send an XMLHTTPRequest to the path loginxhr, where it retrieves the IA. This
is also the last type of requests IdPs answer to. Before serving the response to this request, IdP checks whether the user
is properly authenticated. It then creates the IA and sends it to the browser.

Formal description. In the following, we will first define the (initial) state of i formally and afterwards present the
definition of the relation Ri.

To define the initial state, we will need a term that represents the “user database” of the IdP i. We will call this term
userseti. This database defines, which secret is valid for which identity. It is encoded as a mapping of identities to
secrets. For example, if the secret secret1 is valid for the identites id1and the secret secret2 is valid for the identity id2,
the userseti looks as follows:

userseti = [id1:secret1, id2:secret2]

We define userseti as userseti = 〈{〈u,secretOfID(u)〉 |u ∈ IDi}〉.

Definition 47. A state s ∈ Zi of an IdP i is a term of the form 〈sslkeys, users, signkey, sessions, corrupt〉 where
sslkeys = sslkeysi, users = userseti, signkey ∈ N (the key used by the IdP i to sign UCs), sessions ∈

[
N ×TN

]
,

corrupt ∈ TN .
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An initial state si
0 of i is a state of the form 〈sslkeysi,userseti,signkey(i),〈〉,⊥〉.

The relation Ri that defines the behavior of the IdP i is defined as follows:

Algorithm 10 Relation of IdP Ri

Input: 〈a, f ,m〉,s
1: let s′ := s
2: if s′.corrupt 6≡ ⊥∨m≡ CORRUPT then
3: let s′.corrupt := 〈〈a, f ,m〉,s′.corrupt〉
4: let m′ ← dV (s′)
5: let a′ ← IPs
6: stop 〈〈a′,a,m′〉〉, s′

7: end if
8: let mdec, k, k′, inDomain such that

↪→ 〈mdec,k〉 ≡ deca(m,k′)∧〈inDomain,k′〉 ∈ s.sslkeys
↪→ if possible; otherwise stop 〈〉, s

9: let n, method, path, parameters, headers, body such that
↪→ 〈HTTPReq,n,method, inDomain,path,parameters,headers,body〉 ≡ mdec
↪→ if possible; otherwise stop 〈〉, s

10: if path≡ /.well-known/spresso-info then . Serve support document.
11: let wkDoc := 〈〈signkey,pub(s′.signkey)〉〉
12: let m′ := encs(〈HTTPResp,n,200,〈〉,wkDoc〉,k)
13: stop 〈〈 f ,a,m′〉〉, s′

14: else if path≡ /.well-known/spresso-login then . Serve login dialog.
15: let sessionid := headers[Cookie][sessionid]
16: let email := s′.sessions[sessionid]
17: let m′ := encs(〈HTTPResp,n,200,〈〉,〈script_idp,〈start,email,〈〉〉〉〉,k) . Initial scriptstate of script_idp (defined

below).
18: stop 〈〈 f ,a,m′〉〉, s′

19: else if path≡ /sign∧method ≡ POST then . Serve signing request.
20: let sessionid := headers[Cookie][sessionid]
21: let loggedInAs := s′.sessions[sessionid]
22: if body[email] 6≡ loggedInAs∧body[password] 6≡ s′.userset[body[email]] then
23: stop 〈〉, s
24: end if
25: let ia := sig(〈body[tag],body[email],body[FWDDomain]〉,s′.signkey)
26: let sessionid := ν8
27: let s′.sessions[sessionid] := body[email]
28: let setCookie := 〈Set-Cookie,〈〈sessionid,sessionid,>,>,>〉〉〉
29: let m′ := encs(〈HTTPResp,n,200,〈setCookie〉, ia〉,k)
30: stop 〈〈 f ,a,m′〉〉, s′

31: end if
32: stop 〈〉, s

D.14 Forwarders

We define FWDs formally as atomic DY processes fwd = (Ifwd,Zfwd,Rfwd,sfwd
0 ). As already mentioned, we define

Ifwd = addr(fwd) with the set of states Zfwd being all terms of the form 〈sslkeys,corrupt〉 for sslkeys, corrupt ∈ TN .
The initial state sfwd

0 of an FWD contains the private key of its domain and the corruption state: sfwd
0 = 〈sslkeysfwd,⊥〉.

An FWD responds to any HTTPS request with script_fwd and its initial state, which is empty.
We now specify the relation Rfwd of FWDs. We describe this relation by a non-deterministic algorithm.

Algorithm 11 Relation of an FWD Rfwd

Input: 〈a, f ,m〉,s
1: if s.corrupt 6≡ ⊥∨m≡ CORRUPT then
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2: let s′.corrupt := 〈〈a, f ,m〉,s.corrupt〉
3: let m′ ← dV (s′)
4: let a′ ← IPs
5: stop 〈〈a′,a,m′〉〉, s′

6: end if
7: let mdec, k, k′, inDomain such that

↪→ 〈mdec,k〉 ≡ deca(m,k′)∧〈inDomain,k′〉 ∈ s
↪→ if possible; otherwise stop 〈〉, s

8: let n, method, path, parameters, headers, body such that
↪→ 〈HTTPReq,n,method, inDomain,path,parameters,headers,body〉 ≡ mdec
↪→ if possible; otherwise stop 〈〉, s

9: let m′ := encs(〈HTTPResp,n,200,〈〉,〈script_fwd,〈〉〉〉,k)
10: stop 〈〈 f ,a,m′〉〉,s

D.15 DNS Servers

As already outlined above, DNS servers are modeled as generic DNS servers presented in Appendix B.7. Their (static)
state is set according to the allocation of domain names to IP addresses. DNS servers may not become corrupted.

D.16 SPRESSO Scripts

As already mentioned in Appendix D.1, the set S of the web system SWS = (W ,S ,script,E0) consists of the scripts Ratt,
script_rp, script_idp, and script_fwd, with their string representations being att_script, script_rp, script_idp,
and script_fwd (defined by script).

In what follows, the scripts script_rp, script_idp, and script_fwd are defined formally. First, we introduce some
notation and helper functions.

Notations and Helper Functions. In the formal description of the scripts we use an abbreviation for URLs. We write
URLd

path to describe the following URL term: 〈URL,S,d,path,〈〉〉.
In order to simplify the description of the scripts, several helper functions are used.

CHOOSEINPUT.
The state of a document contains a term scriptinputs which records the input this document has obtained so far

(via XHRs and postMessages, append-only). If the script of the document is activated, it will typically need to pick
one input message from the sequence scriptinputs and record which input it has already processed. For this purpose,
the function CHOOSEINPUT(scriptinputs,pattern) is used. If called, it chooses the first message in scriptinputs that
matches pattern and returns it.

Algorithm 12 Choose an unhandled input message for a script

1: function CHOOSEINPUT(scriptinputs,pattern)
2: let i such that i = min{ j : π j(scriptinputs)∼ pattern} if possible; otherwise return ⊥
3: return πi(scriptinputs)
4: end function

PARENTWINDOW. To determine the nonce referencing the active document in the parent window in the browser,
the function PARENTWINDOW(tree,docnonce) is used. It takes the term tree, which is the (partly cleaned) tree of
browser windows the script is able to see and the document nonce docnonce, which is the nonce referencing the current
document the script is running in, as input. It outputs the nonce referencing the active document in the window which
directly contains in its subwindows the window of the document referenced by docnonce. If there is no such window
(which is the case if the script runs in a document of a top-level window) or no active document, PARENTWINDOW
returns docnonce.
SUBWINDOWS. This function takes a term tree and a document nonce docnonce as input just as the function above.
If docnonce is not a reference to a document contained in tree, then SUBWINDOWS(tree,docnonce) returns 〈〉.
Otherwise, let 〈docnonce, origin, script, scriptstate, scriptinputs, subwindows, active〉 denote the subterm of tree
corresponding to the document referred to by docnonce. Then, SUBWINDOWS(tree,docnonce) returns subwindows.
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AUXWINDOW. This function takes a term tree and a document nonce docnonce as input as above. From all window
terms in tree that have the window containing the document identified by docnonce as their opener, it selects one
non-deterministically and returns its active document’s nonce. If there is no such window or no active document, it
returns docnonce.
OPENERWINDOW. This function takes a term tree and a document nonce docnonce as input as above. It returns the
window nonce of the opener window of the window that contains the document identified by docnonce. Recall that the
nonce identifying the opener of each window is stored inside the window term. If no document with nonce docnonce
is found in the tree tree, ♦ is returned.
GETWINDOW. This function takes a term tree and a document nonce docnonce as input as above. It returns the nonce
of the window containing docnonce.
GETORIGIN. To extract the origin of a document, the function GETORIGIN(tree,docnonce) is used. This function
searches for the document with the identifier docnonce in the (cleaned) tree tree of the browser’s windows and
documents. It returns the origin o of the document. If no document with nonce docnonce is found in the tree tree, ♦ is
returned.
GETPARAMETERS. Works exactly as GETORIGIN, but returns the document’s parameters instead.

Relying Party Index Page (script_rp). As defined in Appendix A.3, a script is a relation that takes as input a term and
outputs a new term. As specified in Appendix C (Triggering the Script of a Document (m = TRIGGER, action = 1)) and
formally specified in Algorithm 5, the input term is provided by the browser. It contains the current internal state of the
script (which we call scriptstate in what follows) and additional information containing all browser state information
the script has access to, such as the input the script has obtained so far via XHRs and postMessages, information
about windows, etc. The browser expects the output term to have a specific form, as also specified in Appendix C and
Algorithm 5. The output term contains, among other information, the new internal scriptstate.

We first describe the structure of the internal scriptstate of the script script_rp.

Definition 48. A scriptstate s of script_rp is a term of the form 〈q, loginSessionToken, refXHR, tagKey, FWDDomain〉
where q ∈ S, loginSessionToken, refXHR, tagKey ∈N ∪{⊥}, FWDDomain ∈ TN .

The initial scriptstate initStaterp of script_rp is 〈start,⊥,⊥,⊥,⊥〉.

We now specify the relation script_rp formally. We describe this relation by a non-deterministic algorithm.
Just like all scripts, as explained in Appendix C (see also Algorithm 5 for the formal specification), the input term

this script obtains from the browser contains the cleaned tree of the browser’s windows and documents tree, the nonce
of the current document docnonce, its own scriptstate scriptstate (as defined in Definition 48), a sequence of all inputs
scriptinputs (also containing already handled inputs), a dictionary cookies of all accessible cookies of the document’s
domain, the localStorage localStorage belonging to the document’s origin, the secrets secret of the document’s origin,
and a set nonces of fresh nonces as input. The script returns a new scriptstate s′, a new set of cookies cookies′, a new
localStorage localStorage′, and a term command denoting a command to the browser.

Algorithm 13 Relation of script_rp

Input: 〈tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage,
↪→ ids, secret〉
1: let s′ := scriptstate
2: let command := 〈〉
3: let origin := GETORIGIN(tree,docnonce)
4: switch s′.q do
5: case start
6: let s′.email← ids
7: let s′.refXHR := λ1
8: let command := 〈XMLHTTPREQUEST,URLorigin.domain

/startLogin
,POST,s′.email,s′.refXHR〉

9: let s′.q := expectStartLoginResponse

10: case expectStartLoginResponse
11: let pattern := 〈XMLHTTPREQUEST,∗,s′.refXHR〉
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12: let input := CHOOSEINPUT(scriptinputs,pattern)
13: if input 6≡ ⊥ then
14: let s′.loginSessionToken := π2(input)[loginSessionToken]
15: let s′.tagKey := π2(input)[tagKey]
16: let s′.FWDDomain := π2(input)[FWDDomain]
17: let command :=

↪→ 〈HREF,〈URL,S,origin.domain,/redir,〈〈loginSessionToken,s′.loginSessionToken〉〉〉,_BLANK,〈〉〉
18: let s′.q := expectFWDReady

19: end if
20: case expectFWDReady
21: let fwdWindowNonce := SUBWINDOWS(tree, AUXWINDOW(tree, docnonce)).1.nonce
22: let pattern := 〈POSTMESSAGE, fwdWindowNonce,〈s′.FWDDomain,S〉,ready〉
23: let input := CHOOSEINPUT(scriptinputs,pattern)
24: if input 6≡ ⊥ then
25: let command := 〈POSTMESSAGE, fwdWindowNonce, 〈tagKey, tagKey〉, 〈s′.FWDDomain,S〉〉
26: let s′.q := expectEIA

27: end if
28: case expectEIA
29: let fwdWindowNonce := SUBWINDOWS(tree, AUXWINDOW(tree, docnonce)).1.nonce
30: let pattern := 〈POSTMESSAGE, fwdWindowNonce,〈s′.FWDDomain,S〉,〈eia,∗〉〉
31: let input := CHOOSEINPUT(scriptinputs,pattern)
32: if input 6≡ ⊥ then
33: let eia := π2(π4(input))
34: let s′.refXHR := λ1
35: let body := 〈〈eia,eia〉,〈loginSessionToken,s′.loginSessionToken〉〉
36: let command := 〈XMLHTTPREQUEST,URLorigin.domain

/login
,POST,body,s′.refXHR〉

37: let s′.q := expectServiceToken

38: end if
39: stop 〈s′,cookies, localStorage,sessionStorage,command〉

Relying Party Redirection Page (script_rp_redir). This simple script (which is loaded from RP in a regular run) is
used to redirect the login dialog window to the actual login dialog (IdPdoc) loaded from IdP. It expects the URL of the
page to which the browser should be redirected in its initial (and only) state.

Algorithm 14 Relation of script_rp_redir

Input: 〈tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage,
↪→ ids, secret〉
1: let command := 〈HREF,scriptstate,⊥,>〉
2: stop 〈scriptstate,cookies, localStorage,sessionStorage,command〉

Login Dialog Script (script_idp). This script models the contents of the login dialog.

Definition 49. A scriptstate s of script_idp is a term of the form 〈q, email〉 with q ∈ S, email ∈ ID∪{〈〉} ∈ T . We call
the scriptstate s an initial scriptstate of script_idp iff s∼ 〈start,∗〉.

We now formally specify the relation script_idp of the LD’s scripting process.

Algorithm 15 Relation of script_idp

Input: 〈tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage,
↪→ ids, secret〉
1: let s′ := scriptstate
2: let command := 〈〉
3: let origin := GETORIGIN(tree,docnonce)
4: switch s′.q do
5: case start
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6: let email := GETPARAMETERS(tree,docnonce)[email]
7: let tag := GETPARAMETERS(tree,docnonce)[tag]
8: let FWDDomain := GETPARAMETERS(tree,docnonce)[FWDDomain]
9: let body := 〈〈email,email〉,〈password,secret〉,〈tag, tag〉,〈FWDDomain,FWDDomain〉〉

10: let command := 〈XMLHTTPREQUEST,URLorigin.domain
/sign

,POST,body,⊥〉
11: let s′.q := expectIA

12: case expectIA
13: let pattern := 〈XMLHTTPREQUEST,∗,∗〉
14: let input := CHOOSEINPUT(scriptinputs,pattern)
15: if input 6≡ ⊥ then
16: let iaKey := GETPARAMETERS(tree,docnonce)[iaKey]
17: let FWDDomain := GETPARAMETERS(tree,docnonce)[FWDDomain]
18: let tag := GETPARAMETERS(tree,docnonce)[tag]
19: let eia := encs(π2(input), iaKey)
20: let url := 〈URL,S,FWDDomain,/,〈〈tag, tag〉,〈eia,eia〉〉〉
21: let command := 〈IFRAME,url,_SELF〉
22: let s′.q := stop

23: end if
24: stop 〈s′,cookies, localStorage,sessionStorage,command〉

Forwarder Script (script_fwd).

Definition 50. A scriptstate s of script_fwd is a term of the form q with q ∈ S. We call s the initial scriptstate of
script_fwd iff s≡ start.

We now formally specify the relation script_rp_index of the FWD’s scripting process.

Algorithm 16 Relation of script_fwd

Input: 〈tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage,
↪→ ids, secret〉
1: let s′ := scriptstate
2: let command := 〈〉
3: let target := OPENERWINDOW(tree,PARENTWINDOW(tree,docnonce))
4: switch s′.q do
5: case start
6: let command := 〈POSTMESSAGE, target, ready, ⊥〉
7: let s′.q := expectTagKey

8: case expectTagKey
9: let pattern := 〈POSTMESSAGE, target,∗,〈tagKey,∗〉〉

10: let input := CHOOSEINPUT(scriptinputs,pattern)
11: if input 6≡ ⊥ then
12: let tagKey := π2(π4(input))
13: let tag := GETPARAMETERS(tree,docnonce)[tag]
14: let eia := GETPARAMETERS(tree,docnonce)[eia]
15: let rpOrigin := 〈decs(tag, tagKey).1,S〉
16: let command := 〈POSTMESSAGE, target,〈eia,eia〉,rpOrigin〉
17: let s′.q := stop

18: end if
19: stop 〈s′,cookies, localStorage,sessionStorage,command〉

E Formal Security Properties Regarding Authentication

To state the security properties for SPRESSO, we first define an SPRESSO web system for authentication analysis. This
web system is based on the SPRESSO web system and only considers one network attacker (which subsumes all web
attackers and further network attackers).
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Definition 51. Let SWS auth
= (W ,S ,script,E0) an SPRESSO web system. We call SWS auth an SPRESSO web system

for authentication analysis iff W contains only one network attacker process attacker and no other attacker processes
(i.e., Net = {attacker}, Web = /0). Further, W contains no DNS servers. DNS servers are assumed to be dishonest,
and hence, are subsumed by attacker. In the initial state sb

0 of each browser b in W , the DNS address is addr(attacker).
Also, in the initial state sr

0 of each relying party r, the DNS address is addr(attacker).

The security properties for SPRESSO are formally defined as follows. First note that every RP service token 〈n, i〉
recorded in RP was created by RP as the result of an HTTPS POST request m. We refer to m as the request corresponding
to 〈n, i〉.

Definition 52. Let SWS auth be an SPRESSO web system for authentication analysis. We say that SWS auth is secure if
for every run ρ of SWS auth, every state (S j,E j,N j) in ρ, every r ∈ RP that is honest in S j with s0(r).FWDDomain being
a domain of an FWD that is honest in S j, every RP service token of the form 〈n, i〉 recorded in S j(r).serviceTokens,
the following two conditions are satisfied:

(A) If 〈n, i〉 is derivable from the attackers knowledge in S j (i.e., 〈n, i〉 ∈ d /0(S j(attacker))), then it follows that the
browser b owning i is fully corrupted in S j (i.e., the value of isCorrupted is FULLCORRUPT) or governor(i) is not an
honest IdP (in S j).

(B) If the request corresponding to 〈n, i〉 was sent by some b ∈ B which is honest in S j, then b owns i.

F Proof of Theorem 2

Before we prove Theorem 2, we show some general properties of the SWS auth.

F.1 Properties of SWS auth

Let SWS auth
= (W ,S ,script,E0) be a web system. In the following, we write sx = (Sx,Ex,Nx) for the states of a web

system.

Definition 53. In what follows, given an atomic process p and a message m, we say that p emits m in a run ρ =
(s0,s1, . . .) if there is a processing step of the form

su−1 −−−→
p→E

su

for some u ∈ N, a set of events E and some addresses x, y with 〈x,y,m〉 ∈ E.

Definition 54. We say that a term t is derivably contained in (a term) t ′ for (a set of DY processes) P (in a processing
step si→ si+1 of a run ρ= (s0,s1, . . .)) if t is derivable from t ′ with the knowledge available to P, i.e.,

t ∈ d /0({t ′}∪
⋃
p∈P

Si+1(p))

Definition 55. We say that a set of processes P leaks a term t (in a processing step si → si+1) to a set of processes
P′ if there exists a message m that is emitted (in si→ si+1) by some p ∈ P and t is derivably contained in m for P′ in
the processing step si→ si+1. If we omit P′, we define P′ := W \P. If P is a set with a single element, we omit the set
notation.

Definition 56. We say that an DY process p created a message m (at some point) in a run if m is derivably contained
in a message emitted by p in some processing step and if there is no earlier processing step where m is derivably
contained in a message emitted by some DY process p′.

Definition 57. We say that a browser b accepted a message (as a response to some request) if the browser decrypted
the message (if it was an HTTPS message) and called the function PROCESSRESPONSE, passing the message and
the request (see Algorithm 6).
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Definition 58. In a similar fashion, we say that an RP r accepted a message (as a response to some request) if the RP
decrypted the message (RPs can only accept HTTPS messages) and added the message’s body to the wkCache in its
state (i.e., Line 14 of Algorithm 9 was called).

Definition 59. We say that an atomic DY process p knows a term t in some state s = (S,E,N) of a run if it can derive
the term from its knowledge, i.e., t ∈ d /0(S(p)).

Definition 60. We say that a script initiated a request r if a browser triggered the script (in Line 10 of Algorithm 5) and
the first component of the command output of the script relation is either HREF, IFRAME, FORM, or XMLHTTPREQUEST
such that the browser issues the request r in the same step as a result.

For a run ρ= (s0,s1, . . .) of SWS auth, we state the following lemmas:

Lemma 1. If in the processing step si → si+1 of a run ρ of SWS auth an honest relying party r (I) emits an HTTPS
request of the form

m = enca(〈req,k〉,pub(k′))

(where req is an HTTP request, k is a nonce (symmetric key), and k′ is the private key of some other DY process u),
and (II) in the initial state s0 the private key k′ is only known to u, and (III) u never leaks k′, then all of the following
statements are true:

1. There is no state of SWS auth where any party except for u knows k′, thus no one except for u can decrypt req.
2. If there is a processing step s j → s j+1 where the RP r leaks k to W \{u,r} there is a processing step sh→ sh+1

with h< j where u leaks the symmetric key k to W \{u,r} or r is corrupted in s j.
3. The value of the host header in req is the domain that is assigned the public key pub(k′) in RP’s keymapping

s0.keyMapping (in its initial state).
4. If r accepts a response (say, m′) to m in a processing step s j → s j+1 and r is honest in s j and u did not leak the

symmetric key k to W \{u,r} prior to s j, then u created the HTTPS response m′ to the HTTPS request m, i.e., the
nonce of the HTTP request req is not known to any atomic process p, except for the atomic DY processes r and u.

Proof. (1) follows immediately from the condition. If k′ is initially only known to u and u never leaks k′, i.e., even with
the knowledge of all nonces (except for those of u), k′ can never be derived from any network output of u, k′ cannot be
known to any other party. Thus, nobody except for u can derive req from m.

(2) We assume that r leaks k to W \ {u,r} in the processing step s j → s j+1 without u prior leaking the key k to
anyone except for u and r and that the RP is not fully corrupted in s j, and lead this to a contradiction.

The RP is honest in si. From the definition of the RP, we see that the key k is always a fresh nonce that is not used
anywhere else. Further, the key is stored in pendingRequests. The information from pendingRequests is not extracted
or used anywhere else, except when handling the received messages, where it is only checked against. Hence, r does
not leak k to any other party in s j (except for u and r). This proves (2).

(3) Per the definition of RPs (Algorithm 9), a host header is always contained in HTTP requests by RPs. From
Line 22 of Algorithm 9 we can see that the encryption key for the request req was chosen using the host header of the
message. It is chosen from the keyMapping in RP’s state, which is never changed during ρ. This proves (3).

(4) An HTTPS response m′ that is accepted by r as a response to m has to be encrypted with k. The nonce k is
stored by the RP in the pendingRequests state information. The RP only stores freshly chosen nonces there (i.e., the
nonces are not used twice, or for other purposes than sending one specific request). The information cannot be altered
afterwards (only deleted) and cannot be read except when the browser checks incoming messages. The nonce k is only
known to u (which did not leak it to any other party prior to s j) and r (which did not leak it either, as u did not leak
it and r is honest, see (2)). The RP r cannot send responses that are encrypted by symmetric encryption keys used
for outgoing HTTPS requests (all encryption keys used for encrypting responses are taken from the matching HTTPS
requests and never from pendingRequests). This proves (4). ut

Lemma 2. For every honest relying party r ∈ RP, every s ∈ ρ, every 〈host,wkDoc〉 ∈〈〉 S(r).wkCache it holds that
wkDoc[signkey]≡ pub(signkey(dom−1(host))) if dom−1(host) is an honest IdP.
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Proof. First, we can see that (in an honest RP) S(r).wkCache can only be populated in Line 14 (of Algorithm 9). There,
the body of a received message m′ is written to S(r).wkCache. From Line 7 we can see that m′ is the response to a
HTTPS message that was sent by r. Only in Lines 39ff., r can assemble (and later sent) such requests.

All such requests are sent to the path /.well-known/spresso-info. As the original request was stored in
pendingRequests, in Line 14, we know that request.host is the domain the original request was encrypted for
and finally sent to.

With the condition of this lemma we see that dom−1(request.host) is an honest IdP, say, p. Lemma 1 applies here
and we can see that p created the HTTPS response, and it was not altered by any other party. In Algorithm 10 we can
see that an honest IdP responds to requests to the path /.well-known/spresso-info in Line 10ff. Here, p constructs
a document wkDoc and sends this document in the body of the HTTPS response. This document is of the following
form: 〈〈signkey,pub(s′.signkey)〉〉. The term s′.signkey is defined in Definition 47 to be signkey(p) and is never
changed in Algorithm 10.

Therefore, a pairing of the form 〈request.host,x〉with x[signkey]≡ pub(signkey(dom−1(request.host))) is stored
in S(r).wkCache. As this applies to all pairings in S(r).wkCache, this proves the lemma.

ut

Definition 61. For every service token 〈n, i〉 we define a service token response for 〈n, i〉 to be an HTTPS response
where the value n is contained in the body of the message. A service token request for 〈n, i〉 is an HTTPS request that
triggered the service token response for 〈n, i〉.

Lemma 3. In a run ρ of SWS auth, for every state s j ∈ ρ, every RP r ∈ RP that is honest in s j, every 〈n, i〉 ∈〈〉
S j(r).serviceTokens, the following properties hold:

1. There exists exactly one l′ < j such that there exists a processing step in ρ of the form

sl′
e′→r−−−−−−−−→

r→〈〈a′, f ′,m′〉〉
sl′+1

with e′ being some events, a′ and f ′ being addresses and m′ being a service token response for 〈n, i〉.
2. There exists exactly one l < j such that there exists a processing step in ρ of the form

sl
〈a, f ,m〉→r−−−−−−→

r→e
sl+1

with e being some events, a and f being addresses and m being a service token request for 〈n, i〉.
3. The processing steps from (1) and (2) are the same, i.e., l = l′.
4. The service token request for 〈n, i〉, m in (2), is an HTTPS message of the following form:

enca(〈〈HTTPReq,nreq,POST,dr,/login,x,h,b〉,k〉,pub(sslkey(dr)))

for dr ∈ dom(r), some terms x, h, nreq, and a dictionary b such that

b[eia]≡ encs(sig(〈tag, i,S(r).FWDDomain〉,ksign), iaKey)

with
tag≡ encs(〈dr,nrp〉, tagKey),

i≡ Sl(r).loginSessions[b[loginSessionToken]].email,

tag≡ Sl(r).loginSessions[b[loginSessionToken]].tag,

iaKey≡ Sl(r).loginSessions[b[loginSessionToken]].iaKey

for some nonces nrp, and ksign.
5. If the governor of i is an honest IdP, we have that ksign = signkey(governor(i)).
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Proof. (1). The service token nonce n of service tokens 〈n, i〉 ∈〈〉 S j(r).serviceTokens can only be contained in a
response that is assembled in Lines 53ff of Algorithm 9. The n is freshly chosen in Line 67, stored (along with the
identity i) to S j(r).serviceTokens (actually to Sq(r).serviceTokens for some q ≤ j) in Line 69 and sent out in
the service token response in Line 70f. The service tokens stored in S j(r).serviceTokens are not used or altered
anywhere else. Therefore, each service token nonce is sent in exactly one (service token) response.
(2). From Line 53 of Algorithm 9 it is easy to see that each service token response is triggered by exactly one request.
(3). Follows immediately from (2).
(4). The basic form of the encrypted HTTPS request, the host header, and the usage of the correct encryption key are
enforced by Lines 26f. The path component is checked to be /login and the method component is checked to be POST
in Line 53. The values of b[eia], i, tag, and iaKey are checked in Lines 62ff.
(5). In Line 64, the term ia is checked to be signed with the signature key stored in Sq(r).wkCache indexed under the
domain of the email address i (for some q≤ j). With Lemma 2, we can see that for the domain of the email address i
this signature key is signkey(dom−1(i.domain)). With dom−1(i.domain) = governor(i) we can see that ia must have
been signed with the signature key of the honest IdP that governs the email address i. Further, in the same line, the
contents of the signature, including the tag, are checked.

ut

F.2 Property A

As stated above, the Property A is defined as follows:

Definition 62. Let SWS auth be an SPRESSO web system for authentication analysis. We say that SWS auth is secure
(with respect to Property A) if for every run ρ of SWS auth, every state (S j,E j,N j) in ρ, every r ∈ RP that is honest in
S j with S0(r).FWDDomain being a domain of an FWD that is honest in S j, every RP service token of the form 〈n, i〉
recorded in S j(r).serviceTokens and derivable from the attackers knowledge in S j (i.e., 〈n, i〉 ∈ d /0(S j(attacker))),
it follows that the browser b owning i is fully corrupted in S j (i.e., the value of isCorrupted is FULLCORRUPT) or
governor(i) is not an honest IdP (in S j).

We want to show that every SPRESSO web system is secure with regard to Property A and therefore assume that
there exists an SPRESSO web system that is not secure. We will lead this to a contradication and thereby show that all
SPRESSO web systems are secure (with regard to Property A).

In detail, we assume: There exists an SPRESSO web system SWS auth, a run ρ of SWS auth, a state s j = (S j,E j,N j)
in ρ, a RP r ∈ RP that is honest in S j with S0(r).FWDDomain being a domain of an FWD that is honest in S j, an RP
service token of the form 〈n, i〉 recorded in S j(r).serviceTokens and derivable from the attackers knowledge in S j

(i.e., 〈n, i〉 ∈ d /0(S j(attacker))), and the browser b owning i is not fully corrupted and governor(i) is an honest IdP (in
S j).

We now proceed to to proof that this is a contradiction. First, we can see that for 〈n, i〉 and s j, the conditions in
Lemma 3 are fulfilled, i.e., a service token request m and a service token response m′ to/from r exist, and m′ is of form
shown in Lemma 3 (4). Let I := governor(i). We know that I is an honest IdP. As such, it never leaks its signing key
(see Algorithm 10). Therefore, the signed subterm ia := sig(〈tag, i,S(r).FWDDomain〉,signkey(I)) had to be created by
the IdP I. An (honest) IdP creates signatures only in Line 25 of Algorithm 10.

Lemma 4. Under the assumption above, only the browser b can issue a request (say, mcert) that triggers the IdP I to
create the signed term ia. The request mcert was sent by b over HTTPS using I’s public HTTPS key.

Proof. We have to consider two cases for the request mcert:
(A). First, if the user is not logged in with the identity i at I (i.e., the browser b has no session cookie that carries a

nonce which is a session id at I for which the identitiy i is marked as being logged in, compare Line 22 of Algorithm 10),
then the request has to carry (in the request body) the password matching the identity i (secretOfID(i)). This secret is
only known to b initially. Depending on the corruption status of b, we can now have two cases:

a) If b is honest in s j, it has not sent the secret to any party except over HTTPS to I (as defined in the definition of
browsers).
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b) If b is close-corrupted, it has not sent it to any other party while it was honest (case a). When becoming close-
corrupted, it discarded the secret.

I.e., the secret has been sent only to I over HTTPS or to nobody at all. The IdP I cannot send it to any other party.
Therefore we know that only the browser b can send the request mcert in this case.

(B). Second, if the user is logged in for the identity i at I, the browser provides a session id to I that refers to a logged
in session at I. This session id can only be retrieved from I by logging in, i.e., case (A) applies, in particular, b has to
provide the proper secret, which only itself and I know (see above). The session id is sent to b in the form of a cookie,
which is set to secure (i.e., it is only sent back to I over HTTPS, and therefore not derivable by the attacker, see prior
work ) and httpOnly (i.e., it is not accessible by any scripts). The browser b sends the cookie only to I. The IdP I never
sends the session id to any other party than b. The session id therefore only leaks to b and I, and never to the attacker.
Hence, the browser b is the only atomic DY process which can send the request mcert in this case.

We can see that in both cases, the request was sent by b using HTTPS and I’s public key: If the browser would intend
to sent the request without encryption, the request would not contain the password in case (A) or the cookie in case (B).
The browser always uses the “correct” encryption key for any domain (as defined in SWS auth). ut

As the request mcert is sent over HTTPS, it cannot be altered or read by any other party. In particular, it is easy to see
that at the point in the run where mcert was sent, b was honest (otherwise, it would have had no knowledge of the secret
anymore).

Lemma 5. In the browser b, the request mcert was triggered by script_idp loaded from the origin 〈d,S〉 for some
d ∈ dom(I).

Proof. First, 〈d,S〉 for some d ∈ dom(I) is the only origin that has access to the secret secretOfID(i) for the identity i
(as defined in Appendix D.11).

With the general properties defined in [11] and the definition of Identity Providers in Appendix D.13, in particular
their property that they only send out one script, script_idp, we can see that this is the only script that can trigger a
request containing the secret. ut

Lemma 6. In the browser b, the script script_idp receives the response to the request mcert (and no other script), and
at this point, the browser is still honest.

Proof. From the definition of browser corruption, we can see that the browser b discards any information about
pending requests in its state when it becomes close-corrupted, in particular any SSL keys. It can therefore not decrypt
the response if it becomes close-corrupted before receiving the response.

The rest follows from the general properties defined in [11]. ut

We now know that only the script script_idp received the response containing the IA. For the following lemmas,
we will assume that the browser b is honest. In the other case (the browser is close-corrupted), the IA ia and any
information about pending HTTPS requests (in particular, any decryption keys) would be discarded from the browser’s
state (as seen in the proof for Lemma 6). This would be a contradiction to the assumption (which requires that the IA
arrived at the RP).

Lemma 7. After receiving ia, script_idp forwards the ia only to an FWD that is honest (in s j, and therefore, also at
any earlier point in the run) and a document script_fwd that was loaded from this FWD over HTTPS.

Proof. We know that the browser b is either close-corrupted (in which case the ia would be discarded as it is only
stored in the window structure, or, more precisely, the script states inside the window structure of the browser, which
are removed when the browser becomes close-corrupted) or it is honest. In the latter case, script_idp (defined in
Algorithm 15) opens an iframe from the FWDDomain that was given to it by RP. It always uses HTTPS for this request.

We can see that script_idp forwards the ia to the domain stored in the variable FWDDomain (Line 20 of Algo-
rithm 15). This variable is set five lines earlier with the value taken from the parameters of the current document. While
we cannot know the actual value of the parameter FWDDomain yet, we know that this parameter does not change (in
the browser definition, it is only set once, when the document is loaded). We can also see that the very same parameter
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was sent to I in Line 10 as the value for the FWD domain that was then signed by I in the ia. As we know the value of
the FWD origin in the ia (it is S(r).FWDDomain), we know that the domain to which the ia is forwarded is the same.

From our assumption, we know that S(r).FWDDomain is the origin of an honest FWD in s j. It is contacted over
HTTPS, so the general properties defined in [11] apply. According to the definition of forwarders (Algorithm 11), they
only respond with script_fwd. The ia is therefore only forwarded to the FWD and its script script_fwd. ut

Lemma 8. The script script_fwd forwards the ia only to the script script_rp loaded from the origin 〈dr,S〉.

Proof. The script script_idp that runs in the honest browser b forwards the (then encrypted) IA along with the tag to
script_fwd. From the definition of the IdP script (Algorithm 15) it is clear that the tag that is forwarded along with the
encrypted IA is the same that was signed by the IdP.

This script (Algorithm 11) tries to decrypt the tag (once it receives a matching key) and sends a postMessage
containing the encrypted IA to the domain contained in the tag, which is dr.

The protocol part of the origin is HTTPS. The only document that r delivers and which receives postMessages is
script_rp, and this therefore is the only script that can receive this postMessage. ut

Lemma 9. From the RP document, the EIA is only sent to the RP r and over HTTPS.

Proof. This follows immediately from the definition of script_rp (see Algorithm 13, in particular Line 36 in conjunction
with Line 3) and the fact that the RP document must have been loaded from the origin 〈dr,S〉 (as shown above).

With Lemmas 6–9 we see that the ia, once it was signed by I, was transferred only to r, the browser b, and to an
honest forwarder. It cannot be known to the attacker or any corrupted party, as none of the listed parties leak it to any
corrupted party or the attacker.

Now, for 〈n, i〉 to be created and recorded in S j(r), a message m as shown above has to be created and sent. This can
only be done with knowledge of eia. From their definitions, we can see that neither I, r nor any forwarder create such a
message, with the only option left being b. If b sends such a request, it is the only party able to read the response (see
general security properties in [11]) and it will not do anything with the contents of the response (see Algorithm 13), in
particular not leak it to the attacker or any corrupted party.

This is a contradication to the assumption, where we assumed that 〈n, i〉 ∈ d /0(S j(attacker)). This shows every
SWS auth is secure in the sense of Property A.

�

F.3 Property B

As stated above, Property B is defined as follows:

Definition 63. Let SWS auth be an SPRESSO web system. We say that SWS auth is secure (with respect to Property B) if
for every run ρ of SWS auth, every state (S j,E j,N j) in ρ, every r ∈ RP that is honest in S j with S0(r).FWDDomain being
a domain of an FWD that is honest in S j, every RP service token of the form 〈n, i〉 recorded in S j(r).serviceTokens,
with the request corresponding to 〈n, i〉 sent by some b ∈ B which is honest in S j, b owns i.

Applying Lemma 3 (1–4), we call the request corresponding to 〈n, i〉 (or service token request) m and its response
m′, and (as in Lemma 3 (2)) we refer to the state of SWS auth in the run ρ where r processes m by sl .

Lemma 10. The request m was sent by script_rp loaded from the origin 〈dr,S〉 where dr is some domain of r.

Proof. The request m is XSRF protected. In Algorithm 9, Line 54, RP checks the presence of the Origin header and
its value. If the request m was initiated by a document from a different origin than 〈dr,S〉, the (honest!) browser b
would have added an Origin header that would not pass this test (or no Origin header at all), according to the browser
definition. The script script_rp is the only script that the honest party r sends as a response and that sends a request to
r. ut
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Lemma 11. The request m contains a nonce loginSessionToken such that

Sl(r).loginSessions[loginSessionToken].email≡ i′

and b owns i′, i.e., ownerOfID(i′) = b.

Proof. With Lemma 10 we know that the request was sent by script_rp. In Algorithm 13 defining script_rp, in Line 35,
the body of the request m is assembled (and this is the only line where this script sends a request that contains the
same path as m). The login session token is taken from the script’s state (loginSessionToken). This part of the state is
initially set to ⊥ and is only changed in Line 14. There, it is taken from the response to the start login XHR issued in
Line 8 (the request and response are coupled using refXHR which is tracked in the script’s state). In Line 6, the script
selects one of the browser’s identities (which are the identities that the browser owns, by the definition of browsers in
Appendix D.11). This identity is then used in the start login XHR.

When receiving this request (which is an HTTPS message, and therefore, cannot be altered nor read by the attacker),
ultimatively, the function SENDSTARTLOGINRESPONSE (Algorithm 8) is called. There are two cases how this
function can be called (see Line 36 of Algorithm 9):

• If the well-know cache of r already contains an entry for the host contained in the email address,
SENDSTARTLOGINRESPONSE is called immediately with the email address contained in the request’s body.
• Else, the email address in the request’s body is stored, together with the request’s HTTP nonce, the HTTPS encryp-

tion key and other data, in the subterm pendingDNS of r’s state. From there, it is later moved to pendingRequests
(Line 21). Finally, in Line 15, SENDSTARTLOGINRESPONSE is called.

We will come back to these two cases further down.
After SENDSTARTLOGINRESPONSE is called, a new loginSessionToken is chosen and in the dictionary

Sx(r).loginSessions[loginSessionToken] the email address (along with other data) is stored (for some x).
The loginSessionToken is then sent as a response to m, in particular, it is encrypted with the symmetric key k

contained in the request. In the first case listed above, the k is immediately retrieved from the request. Otherwise, the
relationship between k and the email address is preserved in any case: If the receiver can decrypt the response to m, it
sent the email address i′ in the request.

As explained above, script_rp takes the loginSessionToken from the response body and stores it in its state to later
use it in the request m. Therefore the start login XHR described above must have taken place before m, i.e., x< l.

The entries in the dictionary loginSessions can not be altered and only be removed when a service token request
with the corresponding value of loginSessionToken is processed. As each loginSessionToken is not leaked to any other
party except r, we know that Sl(r).loginSessions[loginSessionToken].email≡ i′. As shown above, due to the way
i′ is selected by the script, b owns i′. ut

With Lemma 11, we can now show that i = i′: In Line 68 of Algorithm 9, the service token is assembled. In particular,
i is chosen to be Sl(r).loginSessions[loginSessionToken].email, and therefore i = i′ and b owns i.

�

G Indistinguishability of Web Systems

Definition 64 (Web System Command and Schedule). We call a term ζ a web system command (or simply, com-
mand) if ζ is of the form

〈i, j, τprocess,cmdswitch,cmdwindow, τscript,url〉

The components are defined as follows:

• i ∈ N,
• j ∈ N,
• cmdswitch ∈ {1,2,3},
• cmdwindow ∈ N,
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• τscript ∈ T /0(Vscript ∪{x}) with x being a variable and Vscript the set of placeholders for scripting processess (see
Definition 18).
• τprocess ∈ T /0(Vprocess∪{x}) with x being a variable and Vprocess the set of placeholders (see Definition 4).
• url ∈ URLs with URLs being the set of all valid URLs (see Definition 25).

We call a (finite) sequence σ = 〈ζ1, . . . , ζn〉, with ζ1, . . . , ζn being web system commands, a web system schedule (or
simply, schedule).

Definition 65 (Induced Processing Step). Let WS = (W,S ,script,E0) be a web system and

(S,E,N)
〈a, f ,m〉→p−−−−−−→

p→Eout
(S′,E ′,N′)

be a processing step of W (as in Definition 13) with E = (e1,e2, . . .) and

ζ = 〈i, j, τprocess,cmdswitch,cmdwindow, τscript,url〉

a web system command. We say that this processing step is induced by ζ iff

1. ei = 〈a, f ,m〉.
2. Under a lexicographic ordering of W, p is the j-th process in W with a ∈ Ip.
3. E ′ = Eout · (e1, . . . ,ei−1,ei+1, . . .).
4. If p is a (web) attacker process or p is a corrupted browser (i.e., S(p).isCorrupted 6≡ ⊥), then Eout = 〈eout〉 with
〈S′(p),eout〉= τprocess[〈ei,s〉/x]↓.

5. If p is an honest browser (i.e., S(p).isCorrupted ≡ ⊥) and m ≡ TRIGGER, the browser relation behaves as
follows and Eout and S′(p) are obtained accordingly:
(a) If cmdswitch = 1, the browser relation chooses switch = 1 in Line 9 of Algorithm 7 and w in Line 11 of

Algorithm 7 such that w is the cmdwindow-th window in the tree of browser’s state S(p).windows. If this script is
not the attacker script, the browser (deterministically) executes the script in this window. Otherwise, in Line 10
of Algorithm 5, the browser relation chooses the output of the script (of this window) as outλ = τscript[in/x]↓
with the variable in (deterministically) chosen in Line 9 of Algorithm 5.

(b) If cmdswitch = 2, the browser relation chooses switch = 2 in Line 9 of Algorithm 7 and protocol, host, domain,
path, parameters in Line 17ff. of Algorithm 7 such that url = 〈URL,protocol,host,path,parameters〉.

(c) If cmdswitch = 3, the browser relation chooses switch = 3 in Line 9 of Algorithm 7 and w in Line 24 of
Algorithm 7 such that w is the cmdwindow-th window in the tree of browser’s state S(p).windows. (The browser
then starts to reload the document in this window.)

We write
(S,E,N)

ζ−→ (S′,E ′,N′) .

Corollary 1. In some cases a command σ= 〈i, j, τprocess,cmdswitch,cmdwindow, τscript,url〉 does not induce a processing
step under the configuration (S,E,N) in a web system: If i> |E|, a processing step cannot be induced. The same applies
if j does not refer to an existing process. Also, if the command schedules a TRIGGER message to be delivered to a
browser p, cmdswitch ∈ {1,3}, and cmdwindow > |Subwindows(S(p))| (i.e., the command chooses a window of the
browser p, which does not exist), then no processing step can be induced.

Definition 66 (Induced Run). Let WS = (W,S ,script,E0) be a web system, σ = 〈ζ1, . . . , ζn〉 be a finite web
system schedule, and N0 be an infinite sequence of pairwise disjoint nonces. We say that a finite run ρ =
((S0,E0,N0), . . . ,(Sn,En,Nn)) of the system W is induced by σ under nonces N0 iff for all 1 ≤ i ≤ n, ζi induces
the processing step

(Si−1,E i−1,Ni−1)
ζi−→ (Si,E i,Ni) .

We denote the set of runs induced by σ under all infinite sequences of pairwise disjoint nonces N0 by σ(WS).

To define the notion of indistinguishability for web systems, we need to define the notion of static equivalence of
terms in our model. This definition follows the notion of static equivalence by Abadi and Fournet [1].
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Definition 67 (Static Equivalence). Let t1, t2 ∈ TN (V ) be two terms with V a set of variables. We say that t1 and t2
are statically equivalent, written t1 ≈ t2, iff for all terms M, N ∈ T /0({x}) with x a variable and x 6∈V , it holds true that

M[t1/x]≡ N[t1/x] ⇔ M[t2/x]≡ N[t2/x].

Definition 68 (Web System with Distinguished Attacker). Let WS = (W,S ,script,E0) be a web system with W
partitioned into Hon, Web, and Net (as in Definition 21). Let attacker ∈W be an attacker process (out of Web∪Net).
We call ŴS = (W,S ,script,E0,attacker) a web system with the distinguished attacker attacker.

Definition 69 (Indistinguishability). Let WS 0 = (W0,S0,script0,E0
0 , p0), WS 1 = (W1,S1,script1,E0

1 , p1) be web
systems with a distinguished attacker. We call WS 0 and WS 1 indistinguishable under the schedule σ iff for every
schedule σ and every i ∈ {0,1}, we have that for every run ρ ∈ σ(WS i) there exists a run ρ′ ∈ σ(WS 1−i) such that
ρ(pi)≈ ρ′(p1−i).

We call WS 0 and WS 1 indistinguishable iff they are indististinguishable under all schedules σ.

H Formal Proof of Privacy

We will here first describe the precise model that we use for privacy. After that, we define an equivalence relation
between configurations, which we will then use in the proof of privacy.

H.1 Formal Model of SPRESSO for Privacy Analysis

Definition 70 (Challenge Browser). Let dr some domain and b(dr) a DY process. We call b(dr) a challenge browser
iff b is defined exactly the same as a browser (as described in Appendix C) with two exceptions: (1) the state con-
tains one more property, namely challenge, which initially contains the term >. (2) Algorithm 4 is extended by the
following at its very beginning: It is checked if a message m is addressed to the domain CHALLENGE (which we call the
challenger domain). If m is addressed to this domain and no other message m′ was addressed to this domain before
(i.e., challenge 6≡ ⊥), then m is changed to be addressed to the domain dr and challenge is set to ⊥ to recorded that a
message was addressed to CHALLENGE.

Definition 71 (Deterministic DY Process). We call a DY process p = (Ip,Zp,Rp,sp
0) deterministic iff the relation Rp

is a (partial) function.
We call a script Rscript deterministic iff the relation Rscript is a (partial) function.

Definition 72 (SPRESSO Web System for Privacy Analysis). Let SWS = (W ,S ,script,E0) be an SPRESSO
web system with W = Hon ∪Web ∪Net, Hon = B ∪ RP ∪ IDP ∪ FWD ∪DNS (as described in Appendix D.1),
RP = {r1,r2}, FWD = {fwd}, DNS = {dns}, r1 and r2 two (honest) relying parties, fwd an honest forwarder,
dns an honest DNS server. Let attacker ∈ Web be some web attacker. Let dr be a domain of r1 or r2 and b(dr)
a challenge browser. Let Hon′ := {b(dr)}∪RP∪ FWD∪DNS, Web′ := Web, and Net′ := /0 (i.e., there is no net-
work attacker). Let W ′ := Hon′ ∪Web′ ∪Net′. Let S ′ := S \ {script_idp} and script′ be accordingly. We call
SWS priv

(dr) = (W ′,S ′,script′,E0,attacker) an SPRESSO web system for privacy analysis iff the domain fwddomain

is the only domain assigned to fwd, the domain dr1 the only domain assigned to r1, and dr2 the only domain assigned
to r2. Both, r1 and r2 are configured to use the forwarder fwd, i.e., in their state FWDdomain is set to fwddomain. The
browser b(dr) owns exactly one email address and this email address is governed by some attacker. All honest parties
(in Hon) are not corruptible, i.e., they ignore any CORRUPT message. Identity providers are assumed to be dishonest,
and hence, are subsumed by the web attackers (which govern all identities). In the initial state sb

0 of the (only) browser
in W ′ and in the initial states sr1

0 , sr2
0 of both relying parties, the DNS address is addr(dns). Further, wkCache in the

initial states sr1
0 , sr2

0 is equal and contains a public key for each domain registered in the DNS server (i.e., the relying
parties already know some public key to verify SPRESSO identity assertions from all domains known in the system and
they do not have to fetch them from IdP).
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As all parties in an SPRESSO web system for privacy analysis are either web attackers, browsers, or deterministic
processes and all scripting processes are either the attacker script or deterministic, it is easy to see that in SPRESSO
web systems for privacy analysis with configuration (S,E,N) a command ζ induces at most one processing step.
We further note that, under a given infinite sequence of nonces N0, all schedules σ induce at most one run ρ =
((S0,E0,N0), . . . ,(Si,E i,Ni), . . . ,(S|σ|,E |σ|,N|σ|)) as all of its commands induce at most one processing step for the
i-th configuration.

We will now define our privacy property for SPRESSO:

Definition 73 (IdP-Privacy). Let

SWS priv
1 := SWS priv

(dr1) = (W1,S ,script,E0,attacker1) and

SWS priv
2 := SWS priv

(dr2) = (W2,S ,script,E0,attacker2)

be SPRESSO web systems for privacy analysis. Further, we require attacker1 = attacker2 =: attacker and for b1 :=
b(dr1), b2 := b(dr2) we require S(b1) = S(b2) and W1 \{b1}= W2 \{b2} (i.e., the web systems are the same up to the
parameter of the challenge browsers). We say that SWS priv is IdP-private iff SWS priv

1 and SWS priv
2 are indistinguishable.

H.2 Definition of Equivalent Configurations

Let SWS priv
1 = (W1,S ,script,E0,attacker) and SWS priv

2 = (W2,S ,script,E0,attacker) be SPRESSO web systems for
privacy analysis. Let (S1,E1,N1) be a configuration of SWS priv

1 and (S2,E2,N2) be a configuration of SWS priv
2 .

Definition 74 (Proto-Tags). We call a term of the form encs(〈y,n〉,k) with the variable y as a placeholder for a domain,
and n and k some nonces a proto-tag.

Definition 75 (Term Equivalence up to Proto-Tags). Let θ = {a1, . . . ,al} be a finite set of proto-tags. Let t and t ′ be
terms. We call t1 and t2 term-equivalent under a set of proto-tags θ iff there exists a term τ ∈ TN ({x1, . . . ,xl}) such that
t1 = (τ [a1/x1, . . . ,al/xl ])[dr1/y] and t2 = (τ [a1/x1, . . . ,al/xl ])[dr2/y]. We write t1
θ t2.

We say that two finite sets of terms D and D′ are term-equivalent under a set of proto-tags θ iff |D|= |D′| and, given
a lexicographic ordering of the elements in D of the form (d1, . . . ,d|D|) and the elements in D′ of the form (d′1, . . . ,d|D′|),
we have that for all i ∈ {1, . . . , |D|}: di
θ d′i . We then write D
θ D′.

Definition 76 (Equivalence of HTTP Requests). Let m1 and m2 be (potentially encrypted) HTTP requests and
θ = {a1, . . . ,al} be a finite set of proto-tags. We call m1 and m2 δ-equivalent under a set of proto-tags θ iff m1
θ m2
or all subterms are equal with the following exceptions:

1. the Host value and the Origin/Referer headers in both requests are the same except that the domain dr1 in m1 can
be replaced by dr2 in m2,

2. the HTTP body g1 of m1 and the HTTP body g2 of m2 are (I) term-equivalent under θ, (II) for j ∈ {1,2} if
g j[eia]∼ encs(sig(〈encs(〈dr j,∗〉,∗),∗,fwddomain〉,∗),∗) and the origin (HTTP header) of HTTP message in m j
is 〈dr j,S〉 then the receiver of this message is r j, and (III) if g1 contains a dictionary key loginSessionToken

then there exists an l′ ∈ L such that g1[loginSessionToken]≡ l′, and
3. if m1 is an encrypted HTTP request then and only then m2 is an encrypted HTTP request and the keys used to

encrypt the requests have to be the correct keys for dr1 and dr2 respectively.

We write m1 lθ m2.

Definition 77 (Extracting Entries from Login Sessions). Let t1, t2 be dictionaries over N and TN , θ be a finite set
of proto-tags, and d a domain. We call t1 and t2 η-equivalent iff t2 can be constructed from t1 as follows: For every
proto-tag a ∈ θ, we remove the entry identified by the dictionary key i for which it holds that π4(t1[i])≡ a[d/y], if any.
We denote the set of removed entries by D. We write t1Dθ

d (t2,D).
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Definition 78. Let a be a proto-tag, S1 and S2 be states of SPRESSO web systems for privacy analysis, and l a nonce.
We call l a login session token for the proto-tag a, written l ∈ loginSessionTokens(a,S1,S2) iff for any i ∈ {1,2} and
any j ∈ {1,2} we have that π4(Si(r j).loginSessions[l]) = a[dr j/y].

Definition 79 (Equivalence of States). Let θ be a set of proto-tags and H be a set of nonces. Let K := {k | ∃n :
encs(〈y,n〉,k) ∈ θ}. We call S1 and S2 γ-equivalent under (θ,H) iff the following conditions are met:

1. S1(fwd) = S2(fwd), and
2. S1(dns) = S2(dns), and
3. S1(r1) equals S2(r1) except for the subterms pendingDNS, loginSessions and serviceTokens, and
4. S1(r2) equals S2(r2) except for the subterms pendingDNS, loginSessions and serviceTokens, and
5. for two sets of terms D and D′: S1(r1).loginSessions Dθ

dr1
(S2(r1).loginSessions,D),

S2(r2).loginSessionsDθ
dr2

(S1(r2).loginSessions,D′), and D
θ D′, and
6. for all entries x in the subterms pendingDNS of S1(r1), S1(r1), S1(r1), and S1(r1) it holds true that π2x.host is not

a domain name known to the DNS server, and
7. the subterms pendingRequest of S1(r1), S1(r2), S2(r1), and S2(r2) are 〈〉, and
8. the subterm wkCache of S1(r1), S1(r2), S2(r1), and S2(r2) are equal and contain a public key for each domain

registered in the DNS server, and
9. ∀k ∈ K: k 6∈ d /0(

⋃
i∈{1,2}, A∈Web∪Net∪{dns,fwd} Si(A))

10. for each attacker A: S1(A)
θ S2(A), and
11. for all a ∈ θ and all attackers A we have that @ l ∈ loginSessionTokens(a,S1,S2) such that l is a subterm of S1(A)

or S2(A).
12. S1(b1) equals S2(b2) except for for the subterms challenge, pendingDNS, pendingRequests, windows and we

have that

(a) S1(b1).challenge= dr1∧S2(b2).challenge= dr2 or S1(b1).challenge= S2(b2).challenge=⊥, and
(b) |S1(b1).pendingDNS| = |S2(b2).pendingDNS| =: j, for all i ∈ {1, . . . , j}, q1 := πi(S1(b1).pendingDNS),

q2 := πi(S2(b2).pendingDNS) we have that π1(q1) = π1(q2) ∈N and for v1 := π2(q1) and v2 := π2(q2):
i. π1(v1) = π1(v2), and

ii. π3(v1) = π3(v2), and
iii. π1(v1) is either a nonce (∈N ) or a term of the form 〈x,y〉 with x ∈N a nonce and y ∈N ∪{⊥} a nonce

or ⊥, and
iv. if π2(v1).host= dr1∧π2(v2).host= dr2,

then π2(v1)lθ π2(v2) ∧ π2(v1).nonce ∈ H,
else π2(v1)
θ π2(v2) ∧ π2(v1).nonce 6∈ H ∧ @ l ∈ L such that l is a subterm of π2(v1),

and
(c) |S1(b1).pendingRequests| = |S2(b2).pendingRequests| =: j, for all i ∈ {1, . . . , j}, v1 :=

πi(S1(b1).pendingRequests), v2 := πi(S2(b2).pendingRequests) we have that
i. π1(v1) = π1(v2), and

ii. π3(v1) = π3(v2), and
iii. π1(v1) is either a nonce (∈N ) or a term of the form 〈x,y〉 with x ∈N a nonce and y ∈N ∪{⊥} a nonce

or ⊥, and
iv. if π2(v1).host= dr1∧π2(v2).host= dr2,

then π2(v1)lθ π2(v2) ∧ π2(v1).nonce ∈ H ∧ π4(v1) ∈ addr(r1) ∧ π4(v2) ∈ addr(r2),
else π2(v1)
θ π2(v2) ∧ π2(v1).nonce 6∈H ∧ π4(v1) = π4(v2) ∧ @ l ∈ L such that l is a subterm of π2(v1),

and
(d) there is no k ∈ K such that

k ∈ dN \{k}({S1(b1).pendingRequests,S2(b2).pendingRequests,

S1(b1).pendingDNS,S2(b2).pendingDNS})

(i.e., k cannot be derived from these terms by any party unless it knows k), and
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(e) S1(b1).windows equals S2(b2).windows with the exception of the subterms location, referrer,
scriptstate, and scriptinputs of some document terms pointed to by Docs+(S1(b1)) =
Docs+(S2(b2)) =: J. For all j ∈ J we have that:

i. there is no k ∈ K such that

k ∈ dN \{k}({S1(b1). j.location,S2(b2). j.location,

S1(b1). j.referrer,S2(b2). j.referrer})

ii. if S1(b1). j.origin∈ {〈dr1,S〉,〈dr2,S〉} then S1(b1). j.script∈ {script_rp,script_rp_redir}, and
iii. if S1(b1). j.origin≡ 〈fwddomain,S〉 then S1(b1). j.script≡ script_fwd, and
iv. if S1(b1). j.origin ∈ {〈dr1,S〉,〈dr2,S〉} and S1(b1). j.script≡ script_rp then

A. S1(b1). j.location and S2(b2). j.location are term-equivalent under θ except for the host part,
which is either equal or dr1 in b1 and dr2 in b2, and

B. S1(b1). j.referrer and S2(b2). j.referrer are term-equivalent under θ except for the host part,
which is either equal or dr1 in b1 and dr2 in b2, and

C. S1(b1). j.scriptstate 
θ S2(b2). j.scriptstate and if ∃ l ∈ L such that l is a subterm of
S1(b1). j.scriptstate, then S1(b1). j.location.host ≡ dr1 and S2(b2). j.location.host ≡ dr2,
and

D. for p ∈ {

〈XMLHTTPREQUEST,∗,∗〉,
〈POSTMESSAGE,∗,〈fwddomain,S〉,ready〉,
〈POSTMESSAGE,∗,〈fwddomain,S〉,〈eia,∗〉〉

} we have S1(b1). j.scriptinputs| p
θ S2(b2). j.scriptinputs| p, and
E. if ∃ l ∈ L such that l is a subterm of S1(b1). j.scriptinputs, then S1(b1). j.location.host ≡ dr1

and S2(b2). j.location.host≡ dr2, and
F. ∀k ∈ K: k is not contained in any subterm of S1(b1). j.scriptstate except for

S1(b1). j.scriptstate.tagKey, and
• S1(b1). j.origin 6≡ 〈dr1,S〉

=⇒ k 6≡ S1(b1). j.scriptstate.tagKey, and
• S1(b1). j.origin 6≡ 〈dr1,S〉

=⇒ k 6∈ d /0(S1(b1). j.scriptinputs), and
• S2(b2). j.origin 6≡ 〈dr2,S〉

=⇒ k 6≡ S2(b2). j.scriptstate.tagKey, and
• S2(b2). j.origin 6≡ 〈dr2,S〉

=⇒ k 6∈ d /0(S2(b2). j.scriptinputs), and
v. if S1(b1). j.origin ∈ {〈dr1,S〉,〈dr2,S〉} and S1(b1). j.script 6≡ script_rp22 then

A. S1(b1). j.location and S2(b2). j.location are term-equivalent under θ except for the host part,
which is either equal or dr1 in b1 and dr2 in b2, and

B. S1(b1). j.referrer and S2(b2). j.referrer are term-equivalent under θ except for the host part,
which is either equal or dr1 in b1 and dr2 in b2, and

C. S1(b1). j.scriptstate 
θ S2(b2). j.scriptstate and if ∃ l ∈ L such that l is a subterm of
S1(b1). j.scriptstate, then S1(b1). j.location.host ≡ dr1 and S2(b2). j.location.host ≡ dr2,
and

D. there is no k ∈ K such that k ∈ dN \{k}({S1(b1). j.scriptstate})
vi. if S1(b1). j.origin= 〈fwddomain,S〉 then

A. S1(b1). j.location
θ S2(b2). j.location, and
B. S1(b1). j.scriptstate
θ S2(b2). j.scriptstate, and
C. for p = 〈POSTMESSAGE,∗,∗,〈tagKey,∗〉〉 and x1 = S1(b1). j.scriptinputs| p and x2 =

S2(b2). j.scriptinputs| p we have that for all i ∈ {1, . . . , |x|}:
22It immediately follows that S1(b1). j.script≡ script_rp_redir in this case.
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• π2(πi(x1))
θ π2(πi(x2)), and
• π1(π3(πi(x1)))
θ π1(π3(πi(x2))) or
π1(π3(πi(x1))) = dr1∧π1(π3(πi(x2))) = dr2, and

• π2(π3(πi(x1)))
θ π2(π3(πi(x2))), and
• π4(πi(x1))
θ π4(πi(x2)), and

vii. if S1(b1). j.origin 6∈ {〈dr1,S〉,〈dr2,S〉,〈fwddomain,S〉} then
A. S1(b1). j.location
θ S2(b2). j.location, and
B. S1(b1). j.referrer
θ S2(b2). j.referrer, and
C. S1(b1). j.scriptstate
θ S2(b2). j.scriptstate, and
D. S1(b1). j.scriptinputs
θ S2(b2). j.scriptinputs, and
E. there is no k ∈ K such that k ∈ dN \{k}({S1(b1). j.scriptstate,S1(b1). j.scriptinputs}), and
F. @ l ∈ L such that l is a subterm of S1(b1). j.scriptstate or of S1(b1). j.scriptinputs, and

(f) for x ∈ {cookies,localStorage,sessionStorage,sts} we have that S1(b1).x
θ S2(b2).x. For the do-
mains dr1 and dr2 there are no entries in the subterms x.

Definition 80 (Equivalence of Events). Let θ be a set of proto-tags, L be a set of login session tokens, H be a set of
nonces, and K := {k | ∃n : encs(〈y,n〉,k) ∈ θ}. We call E1 = (e(1)1 ,e(1)2 . . .) and E2 = (e(2)1 ,e(2)2 . . .) β-equivalent under
(θ,L,H) iff all of the following conditions are satisfied for every i ∈ N:

1. One of the following conditions holds true:

(a) e(1)i 
θ e(2)i and if e(1)i contains an HTTP(S) message (i.e., HTTP(S) request or HTTP(S) response), then the
HTTP nonce of this HTTP(S) message is not contained in H, or

(b) e(1)i is a DNS request from b1 to dns for dr1 and e(2)i is a DNS request from b2 to dns for dr2, or

(c) e(1)i and e(2)i are both DNS requests from any party except dns addressed to dns for a domain unknown to the
DNS server, or

(d) e(1)i is a DNS response from dns to b1 for a DNS request for dr1 and e(2)i is a DNS response from dns to b2 for
a DNS request for dr2, or

(e) e(1)i is an HTTP request m1 from b1 to r1 and e(2)i is an HTTP request m2 from b2 to r2, m1 lθ m2, and both
requests are unencrypted or encrypted (i.e., m1 and m2 are the content of the encryption) and m1.nonce ∈ H,
or

(f) e(1)i is an HTTP(S) response from r1 to b1 and e(2)i is an HTTP(S) response from r2 to b2, and their HTTP
messages m1 (contained in e(1)i ) and m2 (contained in e(1)i ) are the same except for the HTTP body g1 :=
m1.body and the HTTP body g2 := m2.body which have to be g1
θ g2 and m1.nonce ∈H and if g1 contains
a dictionary key loginSessionToken then there exists an l′ ∈ L such that g1[loginSessionToken]≡ l′.

2. If there exists l ∈ L such that l is a subterm of e(1)i or e(2)i then we have that e(1)i is a message from b1 to r1 and e(2)i

is a message from b2 to r2 or we have that e(1)i is a message from r1 to b1 and e(2)i is a message from r2 to b2.

3. If there exists k ∈ K such that k ∈ dN \{k}({e
(1)
i ,e(2)i }) then e(1)i is an HTTP(S) response from r1 to b1 and eq(2)

i is
an HTTP(S) response from r2 to b2 and the bodies of both HTTP messages are of the form 〈〈tagKey,k〉,∗,∗〉.

4. If e(1)i or e(2)i is an encrypted HTTP response with body g from fwd, then π1(g) is script_fwd.

5. If e(1)i or e(2)i is an HTTP(S) response with body g from a relying party, then it does not contain any Location,
Strict-Transport-Security or Set-Cookie header and if π1(g) is a string representing a script, then π1(g)
is either script_rp or script_rp_redir.

6. Neither e(1)i nor e(2)i are DNS responses from dns for domains unknown to the DNS server.

7. If e(1)i or e(2)i is an unencrypted HTTP response, then the message was sent by some attacker.

Definition 81 (Equivalence of Configurations). We call (S1,E1,N1) and (S2,E2,N2) α-equivalent iff there exists a
set of proto-tags θ and a set of nonces H such that S1 and S2 are γ-equivalent under (θ,H), E1 and E2 are β-equivalent
under (θ,L,H) for L :=

⋃
a∈θ loginSessionTokens(a,S1,S2), and N1 = N2.
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H.3 Privacy Proof

Theorem 3. Every SPRESSO web system for privacy analysis is IdP-private.

Let SWS priv
= (W ,S ,script,E0,attacker) be an SPRESSO web system for privacy analysis.

To prove Theorem 3, we have to show that the SPRESSO web systems SWS priv
1 and SWS priv

2 are indis-
tinguishable (according to Definition 73), where SWS priv

1 and SWS priv
2 are defined as follows: Let SWS priv

1 =

(W1,S ,script,E0,attacker) and SWS priv
2 =(W2,S ,script,E0,attacker) with b1 := b(dr1)∈W1 and b2 := b(dr2)∈W2

challenge browsers. Further, we require W \ {b} = W1 \ {b1} = W2 \ {b2}. We denote the following processes in
SWS priv as in Definition 72:

dns denotes the honest DNS server,
fwd denotes the honest forwarder with domain fwddomain,
r1 denotes the honest relying party with domain dr1, and
r2 denotes the honest relying party with domain dr2.

Following Definition 69, to show the indistinguishability of SWS priv
1 and SWS priv

2 we show that they are indistin-
guishable under all schedules σ. For this, we first note that for all σ, there is only one run induced by each σ (as our
web system, when scheduled, is deterministic). We now proceed to show that for all schedules σ = (ζ1, ζ2, . . .), iff σ
induces a run σ(SWS priv

1 ) there exists a run σ(SWS priv
2 ) such that σ(SWS priv

1 )≈ σ(SWS priv
2 ).

We now show that if two configurations are α-equivalent, then the view of the attacker is statically equivalent.

Lemma 12. Let (S1,E1,N1) and (S2,E2,N2) be two α-equivalent configurations. Then S1(attacker)≈ S2(attacker).

Proof. From the α-equivalence of (S1,E1,N1) and (S2,E2,N2) it follows that S1(attacker)
θ S2(attacker). From
Condition 9 for γ-equivalence it follows that {k | ∃n : encs(〈y,n〉,k) ∈ θ}∩ d /0(

⋃
i∈{1,2}, A∈Web∪Net} Si(A)) (i.e., the

attacker does not know any keys for the tags contained in its view), and therefore it is easy to see that the views are
statically equivalent. ut

We now show that σ(SWS priv
1 )≈ σ(SWS priv

2 ) by induction over the length of σ. We first, in Lemma 13, show that α-
equivalence (and therefore, indistinguishability of the views of attacker) holds for the initial configurations of SWS priv

1
and SWS priv

2 . We then, in Lemma 14, show that for each configuration induced by a processing step in ζ, α-equivalence
still holds true.

Lemma 13. The initial configurations (S0
1,E

0,N0) of SWS priv
1 and (S0

2,E
0,N0) of SWS priv

2 are α-equivalent.

Proof. We now have to show that there exists a set of proto-tags θ and a set of nonces H such that S0
1

and S0
2 are γ-equivalent under (θ,H), E0

1 = E0 and E0
2 = E0 are β-equivalent under (θ,L,H) with L :=⋃

a∈θ loginSessionTokens(a,S1,S2), and N0
1 = N0

2 = N0.
Let θ = H = L = /0. Obviously, both latter conditions are true. For all parties p ∈W1 \{b1}, it is clear that S0

1(p) =
S0

2(p). Also the states S0
1(b1) and S0

2(b2) are equal. Therefore, all conditions of Definition 79 are fulfilled. Hence, the
initial configurations are α-equivalent. ut

Lemma 14. Let (S1,E1,N1) and (S2,E2,N2) be two α-equivalent configurations of SWS priv
1 and SWS priv

2 , respectively.
Let ζ = 〈ci,cp, τprocess,cmdswitch,cmdwindow, τscript,url〉 be a web system command. Then, ζ induces a processing step
in either both configurations or in none. In the latter case, let (S′1,E

′
1,N

′
1) and (S′2,E

′
2,N

′
2) be configurations induced

by ζ such that

(S1,E1,N1)
ζ−→ (S′1,E

′
1,N

′
1) and (S2,E2,N2)

ζ−→ (S′2,E
′
2,N

′
2) .

Then, (S′1,E
′
1,N

′
1) and (S′2,E

′
2,N

′
2) are α-equivalent.

Proof. Let θ be a set of proto-tags and H be a set of nonces for which α-equivalence of (S1,E1,N1) and (S2,E2,N2)
holds and let L :=

⋃
a∈θ loginSessionTokens(a,S1,S2), K := {k | ∃n : encs(〈y,n〉,k) ∈ θ}.

To induce a processing step, the ci-th message from E1 or E2, respectively, is selected. Following Definition 80, we
denote these messages by e(1)i or e(2)i , respectively. We now differentiate between the receivers of the messages.
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We first note that due to the α-equivalence, ζ either induces a processing step in both configurations or in none. We
have to analyze the conditions stated in Corollary 1: The number of waiting events is the same in both configurations,
and therefore, (ci > |E1|) ⇐⇒ (ci > |E2|). Further, the set of processes is the same (except for the browsers, which
are exchanged but have the same IP addresses). Also, we have no processes that share IP addresses within each system.
Therefore, if cp 6= 1 then it refers to no process in both runs (and no processing step can be induced). As we show
below, if e(1)i is delivered to b1 then and only then e(2)i is delivered to b2. Additionally, the window structure in both
browsers is the same, and therefore, cmdwindow either refers to a window that exists in both configurations or in none.
There are no other cases that induce no processing step in either system.

We denote the induced processing steps by

(S1,E1,N1)
〈a1, f1,m1〉→p1−−−−−−−−→

p1→E(1)
out

(S′1,E
′
1,N

′
1) and

(S2,E2,N2)
〈a2, f2,m2〉→p2−−−−−−−−→

p2→E(2)
out

(S′2,E
′
2,N

′
2) .

Case p1 = fwd: We know that one of the cases of Case 1 of Definition 80 must apply for e(1)i and e(2)i . Out of these
cases only Case 1a applies. Hence, p2 = fwd.

In the forwarder relation (Algorithm 11), either Lines 9f. are executed in both processing steps or in none. It is easy
to see that E(1)

out 
θ E(2)
out (containing at most one event). For this new event all cases of Definition 80 except for Cases 2

and 1 hold trivially true.
(*): As both events are static except for IP addresses, the HTTP nonce, and the HTTPS key, there is no k contained in

the input messages or in the state of fwd (except potentially in tags, from where it cannot be extracted), and the output
messages are sent to f1 or f2, respectively, they cannot contain any l ∈ L or k ∈ K. Hence, Case 2 of Definition 80 holds
true.

Both output events are constructed exactly the same out of their respective input events and Case 1a applies for the
output events.

Therefore, E ′1 and E ′2 are β-equivalent under (θ,H,L). As there are no changes to any state, we have that S′1 and S′2
are γ-equivalent under (θ,H). No new nonces are chosen, hence, N1 = N′1 = N2 = N′2.
Case p1 = dns: In this case, only Cases 1a, 1b and 1c of Definition 80 can apply. Hence, p2 = dns. We note that (*)
applies analogously in all cases.

In the first case, it is easy to see that E(1)
out 
θ E(2)

out . In the second case, it is easy to see that the DNS server only
outputs empty events in both processing steps. In the third case, E(1)

out and E(2)
out are such that Case 1d of Definition 80

applies.
Therefore, E ′1 and E ′2 are β-equivalent under (θ,H,L) in all three cases. As there are no changes to any state in all

cases, we have that S′1 and S′2 are γ-equivalent under (θ,H). No new nonces are chosen, hence, N1 = N′1 = N2 = N′2.
Case p1 = r1: First, we consider cases that can never happen or are ignored in both processing steps. After this, we
distinct several cases of HTTPS requests.

If e(1) is a DNS response, we know that e(1)i 
θ e(2)i , which implies p2 = r1. Only DNS responses from dns are
processed by a relying party, other DNS responses are dropped without any state change. As the state of a relying party
fulfills Condition 6 of Definition 79 (RPs only query domains unknown to dns) and both e(1)i and e(2)i fulfill Condition 6
of Definition 80 (there are no DNS responses from dns about domains unknown to dns), we have a contradiction.
Hence, e(1)i cannot be a DNS response.

If e(1) is an HTTP response, we know that e(1)i 
θ e(2)i , which implies p2 = r1. From Condition 7 of Definition 79,
we know that relying parties always drop HTTP responses (without any state change).

If e(1)i is any other message that is not a (properly) encrypted HTTP request, we have that e(1)i 
θ e(2)i , which implies
p2 = r1. The relying party drops such messages in both processing steps (without any state change).

For the following, we note that a relying party never sends unencrypted HTTP responses.
There are four possible types of HTTP requests that are accepted by r1 in Algorithm 9:

• path = / (index page), Line 28,
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• path = /startLogin (start a login), Line 31,
• path = /redir (redirect to IdP), Line 43, and
• path = /login (login), Line 53.

From the cases in Definition 80, only two can possibly apply here: Case 1a and Case 1e. For both cases, we will now
analyze each of the HTTP requests listed above separately.
Definition 80, Case 1a: e(1)i 
θ e(2)i . This case implies p2 = r1 = p1. As we see below, for the output events E(1)

out and
E(2)

out (if any) only Case 1a of Definition 80 applies. This implies that the output events may not contain any HTTP
nonce contained in H. As we know that the HTTP nonce of the incoming HTTP requests is not contained in H and the
output HTTP responses (if any) of the RP reuses the same HTTP nonce, the nonce of the HTTP responses cannot be in
H.

• path = /. In this case, the same output event is produced, i.e. E(1)
out = E(2)

out , and Condition 5 of Definition 80
holds true. Also, (*) applies. The remaining conditions are trivially fulfilled and E ′1 and E ′2 are β-equivalent under
(θ,H,L). As there are no changes to any state, we have that S′1 and S′2 are γ-equivalent under (θ,H). No new
nonces are chosen, hence, N1 = N′1 = N2 = N′2.
• path = /startLogin. The domains of the email addresses in both message bodies are either equivalent and

registered to the DNS server (and hence, wkCache contains a public key for this domain), or they are not contained
in wkCache (in both, S1(r1) and S2(r1)). If they are unknown (i.e., not contained in wkCache), they are not
registered in the DNS server. Nonetheless, in this case a DNS request is sent to dns. Then, the terms E(1)

out and
E(2)

out contain a request matching Case 1a of Definition 80. As E(1)
out and E(2)

out are constructed such that besides IP
addresses, a string, and a nonce, they only contain a term derived from the input events. In particular, they contain
no k ∈ K or l ∈ L (**): As Condition 2 of Definition 80 applies for the input events, this condition also applies
for the output events. Thus, E ′1 and E ′2 are β-equivalent under (θ,H,L). The states S′1(r1) is equal to S1(r1) up to
the subterm pendingDNS, and S′2(r1) is equal to S2(r1) up to the subterm pendingDNS. The subterm pendingDNS

only contains a new entry for a domain unknown to the DNS server. Hence, Condition 6 of Definition 79 holds.
Thus, we have that S′1 and S′2 are γ-equivalent under (θ,H). Exactly one nonce is chosen in both processing steps,
and therefore N′1 = N′2.
If the domains of the email addresses are valid and registered in wkCache, then SENDSTARTLOGINRESPONSE
is called. In both processing steps, a tag is constructed exactly the same. The same HTTP response (which does not
contain a k ∈ K or a l ∈ L) is put in both E(1)

out and E(2)
out . The first element of the response’s body is not a string and

therefore Condition 5 holds true. The tag is only created on r1 in both runs and hence, θ does not have to be altered.
Analogously to (**) we have that E ′1 and E ′2 are β-equivalent under (θ,H,L). The subterm loginSessions of
the state of r1 is extended exactly the same. Thus, we have that S′1 and S′2 are γ-equivalent under (θ,H). In both
processing steps exactly four nonces are chosen, and we have that N′1 = N′2.
• path= /redir. First, we note that there is no l ∈ L contained in either m1 or m2 (by the Defintion of β-equivalence).

We further note that a relying party that receives an (encrypted) HTTP request for the path /redir either (I) stops
in Line 46 of Algorithm 9 with an empty output or (II) emits an HTTP response in Line 52. The state of the relying
party is not changed in either case.
We now show that in both processing steps always the same cases apply. For i ∈ {1,2} and bodyi the body of the
HTTPS request mi, Case (II) applies for r1 iff

Si(r1).loginSessions[bodyi[loginSessionToken]] 6≡ 〈〉

(see Lines 44ff. of Algorithm 9).
From Condition 5 of Definition 79, we know that S2(r1).loginSessions can be constructed from
S1(r1).loginSessions without removing the entry with the dictionary key body1[loginSessionToken]
(as this key is not in L). Thus, both dictionaries either contain the same entry for the dictionary key
body1[loginSessionToken] or they both contain no such entry. Hence, Case (II) applies in both processing
steps or in none.
In both cases, exactly the same outputs are emitted (without containing any l ∈ L or k ∈ K) and no state is changed
and no new nonces are chosen. In both cases, the first element of the response body (if any) is script_rp_redir.
We therefore trivially have α-equivalence of the new configurations.
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• path = /login. This case can be handled analogously to the previous case with two exceptions:
(A) First, there are two additional checks, the first in Line 54 of Algorithm 9 and the second in Line 64. We have
to show that both checks each either simultaneously succeed or fail in both cases.
For the first check, it is easy to see that this follows from m1
θ m2.
As we have that m1
θ m2, and in particular eia1 := body1[eia]
θ body2[eia] =: eia2, both, eia1 and eia2 have
the same structure. If this structure does not match the expected structure (see Line 62f.), the checks in both
processing steps fail.
If r1 accepts the identity assertion, then we have that the tag, the email address and the forwarder domain must be
equal in m1 and m2 as

S1(r1).loginSessions[body1[loginSessionToken]]

= S2(r1).loginSessions[body2[loginSessionToken]] .

Hence, r1 either accepts in both processing steps or in none.
(B) If r1 accepts, i.e., it does not stop with an empty message, then r2 accepts. A nonce is chosen exactly the same
in both processing steps. Hence, we have that N′1 = N′2.

Definition 80, Case 1e: e(1)i is an HTTP(S) request from b1 to r1 and e(2)i is an HTTP(S) request from b2 to r2. This
case implies p2 = r2.

We note that Condition 5 of Definition 80 holds for the same reasons as in the previous case. As the response is
always addressed to the IP address of b1 or b2, respectively, Condition 5 of Definition 80 is fulfilled.

As we see below, for the output events E(1)
out and E(2)

out (if any) only Case 1f of Definition 80 applies. This implies that
the output events must contain an HTTP nonce contained in H. As we know that the HTTP nonce of the incoming
HTTP requests is contained in H and the output HTTP responses (if any) of the RP reuses the same HTTP nonce, the
nonce of the HTTP responses is in H.

• path = /. In this case, the output events produced (containing no l ∈ L or k ∈ K result in E ′1 and E ′2 being β-
equivalent under (θ,H,L) according to Definition 80, Case 1f. As there are no changes to any state, we have that
S′1 and S′2 are γ-equivalent under (θ,H). No new nonces are chosen, hence, N1 = N′1 = N2 = N′2.
• path = /startLogin. As above, both email addresses in the input events either equivalent and their domain is

known to the relying parties, or both email address domains are unknown. The latter case is analogue to above.
Otherwise, wkCache, then SENDSTARTLOGINRESPONSE is called. In both processing steps, a tag is con-
structed the same up to the RP domain dr1 or dr2, respectively.
In both processing steps, an HTTP response is created. We denote the HTTP response generated by r1 as m′1 and
the one generated by r2 as m′2. We then have that

m′1 = encs(〈HTTPResp,n,200,〈〉,g1〉,k)
m′2 = encs(〈HTTPResp,n,200,〈〉,g2〉,k)

with

g1 = 〈〈tagKey,ν2〉,〈loginSessionToken,ν4〉,〈FWDDomain,S1(r1).FWDDomain〉〉
g2 = 〈〈tagKey,ν2〉,〈loginSessionToken,ν4〉,〈FWDDomain,S2(r2).FWDDomain〉〉

Obviously, m′1 equals m′2. For N1 = N2 = (n1,n2, . . .), we set θ′ = θ∪{encs(〈y,n1〉,n2)}, N′1 = N′2 = (n5, . . .) (as
exactly four nonces are chosen in both processing steps), and L′ = L∪{n4}. The receiver of both messages is the
browser b1 or b2, respectively. Obviously, it holds that L′ =

⋃
a∈θ′ loginSessionTokens(a,S

′
1,S
′
2) and there exists

an l′ ∈ L′ such that g1[loginSessionToken] ≡ l′. As Conditions 1f and 3 of Definition 80 hold, E ′1 and E ′2 are
β-equivalent under (θ′,H,L′). The subterm loginSessions of S1(r1) is extended exactly the same as the subterm
loginSessions of S2(r2). Thus, we have that S′1 and S′2 are γ-equivalent under (θ′,H). (As mentioned above, in
both processing steps exactly four nonces are chosen, and we have that N′1 = N′2.)
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• path = /redir. By the definition of β-equivalence, the login session token l is the same. By the definition of
γ-equivalence, we have that Algorithm 9 either (I) stops in both processing steps in Line 46 with an empty output
or (II) (if l ∈ L) emits an HTTP response in both processing steps in Line 52.
From Condition 5 of Definition 79 we know that for ls1 := S1(r1).loginSessions[l] and ls2 :=
S2(r2).loginSessions[l] we have that ls1
θ ls2.
We denote the HTTP response generated by r1 as m′1 and the one generated by r2 as m′2. We then have that

m′1 = encs(〈HTTPResp,n,200,〈〉,g1〉,k)
m′2 = encs(〈HTTPResp,n,200,〈〉,g2〉,k)

with

g1 = 〈script_rp_redir,〈URL,S,domain1,/.well-known/spresso-login,params1〉〉
g2 = 〈script_rp_redir,〈URL,S,domain2,/.well-known/spresso-login,params2〉〉

and domain1, domain2, params1, params2 derived exactly the same from ls1 and ls2, respectively (and neither
params1 nor params2 contains a key loginSessionToken). No keys k ∈ K are contained in the output. Thus, the
output events fulfill Condition 1f of Definition 80.
No state is changed and no new nonces are chosen. We therefore have α-equivalence of the new configurations.
• path = /login.

This case can be handled analogously to the previous case with two exceptions:
(A) First, there are two additional checks, the first in Line 54 of Algorithm 9 checks the origin header and the
second in Line 64 checks the identity assertion.
As we know that m1 lθ m2, we have that if the first check fails in r1 then and only then it fails in r2. The same
holds true for the second check.
If r1 accepts the identity assertion, then we have that the email address must be equal in m1 and m2 as

S1(r1).loginSessions[body1[loginSessionToken]]

=S2(r1).loginSessions[body2[loginSessionToken]] .

and we have that the identity assertion in g1 is valid for r1, i.e., signed correctly and contains a tag for dr1, and
thus, the identity assertion in g2 is valid for r2. Hence, r1 and r2 either accept in both processing steps or in none.
(B) If r1 accepts, i.e., it does not stop with an empty message, we know that r2 accepts. A nonce is chosen exactly
the same in both processing steps. Hence, we have that N′1 = N′2.

Case p1 = r2: This case is analogue to the case p1 = r1 above. Note that the Case 1e of Definition 80 cannot occur by
definition.
Case p1 = b1: =⇒ p2 = b2

We now do a case distinction over the types of messages a browser can receive.

DNS response For the input events either Condition 1a of Definition 80 or Condition 1d apply. Therefore, the DNS
request/response nonces in both events are equivalent up to RP domains under a set of proto-tags θ. From Condi-
tion 12b of Definition 79, we know that for a given nonce, there is either an entry in the dictionary pendingDNS
in both browsers or in none. There are no entries under keys that are not nonces. Hence, both browsers either
continue processing the incoming DNS response or stop with no state change and no output events in Line 55 of
Algorithm 7. Further, we note that the resolved address contained in the DNS response has to be an IP address.
From Condition 12b of Definition 79, we know that the protocol in both stored HTTP requests is the same.
Therefore, the browsers either both choose a nonce (for HTTPS request) or none.
There can now be two cases: (I) The IP addresses in both DNS responses are the same or (II) the IP address in
m1 is an IP address of r1 and the IP address in m2 is an IP address of r2. In both cases, the pending requests of
the respective browsers are amended in such a way that they fulfill Condition 12c (as they fulfilled Condition 12b,
which is essentially the same for HTTP(s) requests).
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For E(1)
out and E(2)

out , we have that in Case (I) E(1)
out 
θ E(2)

out and hence Condition 1a of Definition 80 is fulfilled. In
Case (II), the output messages fulfill Condition 1e.
From Condition 2 of Definition 80, we know that no l ∈ L is contained in the DNS responses. Further, we know
from Condition 1d of Definition 80 that if the IP addresses in the DNS responses differ, then they are responses for
dr1 and dr2, respectively. From Condition 12b of Definition 79, we know that only requests (prepared) for dr1 and
dr2, respectively, may contain a subterm l ∈ L. Hence, Condition 2 of Definition 79 holds true.
We also have that no k ∈ K is contained in the response (with Condition 3 of Definition 79). There is also no k ∈ K
contained in the browser’s pending HTTP requests, and therefore, there is none in the output events.
We have that S′1 and S′2 are γ-equivalent under (θ,H), E ′1 and E ′2 are β-equivalent under (θ,H,L), N′1 = N′2, and
thus, the new configurations are α-equivalent.

HTTP response In this case, it is clear that the HTTP(s) response nonce, which has to match the nonce in the browser’s
pendingRequests, is either the same in both messages m1 and m2 or it contains a tag. If it contains a tag (with
Condition 12c of Definition 79) or if it contains a nonce that is not in pendingRequests (which contains the same
nonces for both browsers), both browsers stop and do not output anything or change their state.
We can now distinguish between two cases: In both browsers, (I) the reference that is stored along with the HTTP
nonce is a window reference (in this case, the request was a “normal” HTTP(S) request), or (II) this reference is a
pairing of a document nonce and an XHR reference chosen by the script that sent the request, which is an XHR.
From Condition 12c of Definition 79 it is easy to see that no other cases are possible (in particular, the reference in
both browsers is the same).
(I) In Case (I), we can distinguish between the following two cases:

(a) The HTTP nonce in m1 is in H: In this case, only Case 1f of Definition 80 can apply. We therefore have
that there is no Location, Set-Cookie or Strict-Transport-Security header in the response, and that the
responses m1 and m2 are equal up to proto-tags in θ. From Case 12c of Definition 79 we have that in
both browsers b1 and b2 the encryption keys stored in pendingRequests are the same, that the expected
sender in e(1)i is r1 and in e(2)i is r2.
With this, we observe that both browsers either accept and successfully decrypt the messages and call
the function PROCESSRESPONSE, or both browsers stop with not state change and no output event (in
which case the α-equivalence is given trivially). In particular we note that the expected sender in both
cases matches precisely the sender the message has (compare Case 1f of Definition 80).
In PROCESSRESPONSE, we see that no changes in the browsers’ cookies are performed (as no cookies
are in the response), the sts subterm is not changed, and no redirection is performed (as no Location
header is present).
Now, new documents are created in each browser. These have the form

〈ν7, location,referrer,script,scriptstate,〈〉,〈〉,>〉

with
location = 〈URL,protocol,host,path,parameters〉 .

Here, script, scriptstate are the same and protocol, path, parameters are taken from the requests, which
means that these subterms are equal or term-equivalent up to proto-tags θ according to Case 12c of
Definition 79. The host and the referrer are the same in both states up to exchange of domains, which can
be dr1 in b1 and dr2 in b2.
We note that if k ∈ K, then the request will not be of the correct form to be parsed into a document in the
browser, and both browsers stop with an empty output and no state change.
The browser now attaches these newly created documents to its window tree, and we have to check that
the Condition 12e of Definition 79 is satisfied.
As we have that both incoming messages were encrypted messages (see Case 7 of Definition 80)
and both messages come from r1 and r2, respectively, and therefore script is either script_rp or
script_rp_redir (see Case 5 of Definition 80) we have to check Conditions 12(e)iv and 12(e)v of
Definition 79 in particular.
The scriptstate is initially equal and may contain a subterm l ∈ L (as we know from HTTP nonce in m1
being in H that the host of this document is dr1 in b1 and dr2 in b2), and the script inputs are empty. The
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document’s referer is constructed from the referer header of the request, which is equal in both cases or
has the host dr1 in b1 and dr2 in b2.
To sum up, γ-equivalence under (θ,H) is preserved. α-equivalence is preserved as no output event is
generated and the exact same number of nonces are chosen.

(b) The HTTP nonce in m1 is not in H: In this case we have that e(1)i 
θ e(2)i (Case 1a of Definition 80), and
that the HTTP nonces, senders, encryption keys (if any) and original requests in the pending requests of
both browsers are either equal or equivalent up to proto-tags θ. There can be no k ∈ K as a subterm (except
in tags) of the input.
With this, we observe that both browsers either accept and successfully decrypt the messages and call
the function PROCESSRESPONSE, or both browsers stop with no state change and no output event (in
which case the α-equivalence is given trivially). In particular we note that the expected sender in both
cases matches precisely the sender of the message (as it is equal).
If there is a Set-Cookie header in one of the responses, a new entry in the cookies of each browsers is
created (which obviously is term-equivalent up to θ, and therefore is in compliance with the requirements
for γ-equivalence). The same holds true for any Strict-Transport-Security headers.
Now, if there is a Location header in m1 (and therefore also in m2), a new request is generated and stored
under the pending DNS requests, and a DNS request is sent out. The new HTTP(S) requests contains the
method, body, and Origin header of the original request (which were equivalent up to proto-tags θ), where
the Origin header is amended by the host and protocol of the original request.
Also, we know from e(1)i 
θ e(2)i that neither event may contain a subterm l ∈ L or k ∈ K. Hence, the
transferred (initial) scriptstate (or a request generated by a Location header, see below) cannot contain a
subterm l ∈ L or k ∈ K.
Now, assuming that the domain in the Location header was not CHALLENGE, then the new request is
term-equivalent under θ between both browsers. A new DNS request is generated (which conforms to
Condition 1a of Definition 79). It is sent out and the HTTP request is stored in the pending DNS requests
of each browser. It is clear that in this case, the conditions for γ-equivalence under (θ,H) (in particular,
Condition 12b) and β-equivalence under (θ,H,L) are satisfied. The same number of nonces is chosen.
Altogether, α-equivalence is given.
If, however, the domain is CHALLENGE (and the browser has not started a request to CHALLENGE before; in
this case the browser would behave as above), then the domain is dr1 in b1 and dr2 in b2. In particular, in
the resulting requests, the Host header is exchanged in this way. For alpha equivalence to hold for the new
configuration, we have H ′ = H ∪{n}, where n is the nonce chosen for the HTTP(S) request. A new DNS
request is generated (which in this case conforms to Condition 1b of Definition 79). Therefore, we have
γ-equivalence under (θ,H ′) and β-equivalence under (θ,H ′,L). The same number of nonces is chosen,
and we indeed have α-equivalence.
If there is no Location header in m1 (and therefore none in m2), a new document is constructed just as in
the case when the nonce in m1 is in H.
The scriptstate is initially equal, and the script inputs are empty. The document’s referer is constructed
from the referer header of the request, which is equal in both cases (up to proto-tags in θ).
To sum up, γ-equivalence under (θ,H) is preserved in this case as well. α-equivalence is preserved as no
output event is generated and the exact same number of nonces are chosen.

(II) In Case (II), i.e., the response is a response to an XHR, we have that reference is a tupel, say, reference =
〈docnonce,xhrref 〉, and we again distinguish between the two cases as above:

(a) The HTTP nonce in m1 is in H: In this case, only Case 1f of Definition 80 can apply. We therefore have
that there is no Location, Set-Cookie or Strict-Transport-Security header in the response, and that the
responses m1 and m2 are equal up to proto-tags in θ. From Case 12c of Definition 79 we have that in both
browsers b1 and b2 the encryption keys stored in pendingRequests are the same and that the expected
sender in e(1)i is r1 and in e(2)i is r2.
With this, we observe that both browsers either accept and successfully decrypt the messages and call
the function PROCESSRESPONSE, or both browsers stop with not state change and no output event (in
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which case the α-equivalence is given trivially). In particular we note that the expected sender in both
cases matches precisely the sender of the message (compare Case 1f of Definition 80).
In PROCESSRESPONSE, we see that no changes in the browsers’ cookies are performed (as no cookies
are in the response), the sts subterm is not changed, and no redirection is performed (as no Location
header is present).
A new input is constructed for the document that is identified by docnonce. We note that such a document
exists either in both browsers or in none (in which, again, both browsers stop with no output or state
change). As the input events may contain a subterm l ∈ L (as we know from HTTP nonce in m1 being in
H that the host of this document is dr1 in b1 and dr2 in b2), the constructed scriptinput may also contain a
subterm l ∈ L. The same holds true for keys k ∈ K.
For j ∈ {1,2}, we have that the scriptinput term for the document in b j is
〈XMLHTTPREQUEST,gj.body,xhrref 〉, where g j is the HTTP body of m j. With g1 
θ g2 and
xhrref ∈ N ∪ {⊥}, it is easy to see that the resulting scriptinput term of the document is
term-equivalent under proto-tags θ (as it was before). This satisfies γ-equivalence on the new browser
state.
No output event is generated, and no nonces are chosen. Therefore we have α-equivalence on the new
configuration.

(b) The HTTP nonce in m1 is not in H: In this case we have that e(1)i 
θ e(2)i (Case 1a of Definition 80), and
that the HTTP nonces, senders, encryption keys (if any) and original requests in the pending requests of
both browsers are either equal or equivalent up to proto-tags θ.
With this, we observe that both browsers either accept and successfully decrypt the messages and call
the function PROCESSRESPONSE, or both browsers stop with not state change and no output event (in
which case the α-equivalence is given trivially). In particular we note that the expected sender in both
cases matches precisely the sender the message has (as it is equal).
If there is a Set-Cookie header in one of the responses, a new entry in the cookies of each browsers is
created (which obviously is term-equivalent up to θ, and therefore is in compliance with the requirements
for γ-equivalence). The same holds true for any Strict-Transport-Security headers.
Now, if there is a Location header in m1 (and therefore also in m2), both browsers stop with not state change
and no output event (in which case the α-equivalence is given trivially), as XHR cannot be redirected in
the browser.
If there is no Location header in m1 (and therefore none in m2), a new input is constructed for the document
that is identified by docnonce. We note that such a document exists either in both browsers or in none. For
j ∈ {1,2}, we have that the scriptinput for the document in b j is 〈XMLHTTPREQUEST,gj.body,xhrref 〉,
where g j is the HTTP body of m j. With e(1)i 
θ e(2)i (which may not contain a subterm l ∈ L or k ∈ K), it
is easy to see that the resulting scriptinput term of the document is term-equivalent under proto-tags θ
(as it was before). This satisfies γ-equivalence on the new browser state.
No output event is generated, and no nonces are chosen. Therefore we have α-equivalence on the new
configuration.

TRIGGER We now distinguish between the possible values for cmdswitch.

1 (trigger script): In this case, the script in the window indexed by cmdwindow is triggered. Let j be a pointer to
that window.
We first note that such a window exists in b1 iff it exists in b2 and that S1(b1). j.script ≡ S2(b2). j.script.
We now distinguish between the following cases, which cover all possible states of the windows/documents:
1. S1(b1). j.origin ∈ {〈dr1,S〉,〈dr2,S〉} and S1(b1). j.script≡ script_rp.

Similar to the following scripts, the main distinction in this script is between the script’s internal states
(named q). With the term-equivalence under proto-tags θ we have that either S1(b1). j.scriptstate.q=
S2(b2). j.scriptstate.q or the script’s state contains a tag and is therefore in an illegal state (in which
case the script will stop without producing output or changing its state).
We can therefore now distinguish between the possible values of S1(b1). j.scriptstate.q =
S2(b2). j.scriptstate.q:
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start: In this case, the script chooses one nonce in both processing steps and creates an XHR addressed
to its own origin, which is in both cases either (a) equal and 〈dr1,S〉 or 〈dr2,S〉 or it is (b) 〈dr1,S〉 in
b1 and 〈dr2,S〉 in b2. The path is the (static) string /startLogin. The script saves the freshly chosen
nonce (referencing the XHR) and a (static) value for q in its scriptstate. We note that if a k ∈ K is
contained in the script’s state, it is never sent out in this state.
In Case (a), we have that the command is term-equivalent under proto-tags θ and hence, the browser
emits a DNS request which is term-equivalent, and appends the XHR in pendingDNS. Hence, we
have γ-equivalence under (θ,H) for the new states, β-equivalence under (θ,H,L) for the new events,
and α-equivalence for the new configuration.
In Case (b), we have that the prepared HTTP request is δ-equivalent under θ, and is added to
pendingDNS in the browser’s state, we set H ′ := H ∪{n} with n being the nonce that the browser
chooses for λ1. The browser emits a DNS request that fulfills Condition 1b of Definition 80. Therefore,
we have γ-equivalence under (θ,H ′) for the new states. As the request added to pendingDNS in the
browser’s state fulfills Condition 12b, we have β-equivalence under (θ,H ′,L) for the new events, and
α-equivalence for the new configuration.

expectStartLoginResponse: In this case, the script retrieves the result of an XHR from scriptinputs that
matches the reference contained in scriptstate. From Condition 12(e)iv of Definition 79 we know that
all results from XHRs in scriptinput are term-equivalent up to θ and that scriptstate is term-equivalent
up to θ. Hence, in both browsers, both scripts stop with an empty command or both continue as they
successfully retrieved such an XHR.
Now, a URL is constructed (exactly the same) for an (HTTPS) origin that is the origin of the document.
We have to distinguish between to cases: Either the origin is (i) equal in b1 and b2, or (ii) the origin
is 〈dr1,S〉 in b1 and 〈dr2,S〉 in b2. In the first case (i), no subterm l ∈ L is contained in scriptinput
and hence, no such subterm is contained in the constructed URL. In the second case (ii), however, we
have that such a subterm may be contained in scriptinput. But as the URL commands the browser
to prepare a request to dr1 and dr2, respectively, the request may be stored in pendingDNS of the
browser’s state.
To store the prepared HTTP request in pendingDNS, the browser chooses a nonce n. We construct
the set H ′ as follows: In (i) H ′ := H and in (ii) H ′ := H ∪{n}. Thus, Condition 12b of Definition 79
holds true under (θ,H ′).
In Case (i) we also have that no k ∈ K is written into scriptstate.tagKey. Otherwise, a k ∈ K may
be written there. In no case, a k ∈ K is contained in the output event or generated HTTP request (as
scriptstate.tagKey is not used to create such event or request).
The output events of both browsers are either a DNS request that is equal in (i) or a DNS request that
matches Condition 1b of Definition 80.
We now have that S′1 and S′2 are γ-equivalent under (θ,H ′), E ′1 and E ′2 are β-equivalent under (θ,H ′,L),
and as exactly the same number of nonces is chosen, we have that the new configuration is α-
equivalent.

expectFWDReady: In this case, the script retrieves the result of a postMessage from scriptinputs. As we
know that S1(b1). j.scriptstate
θ S2(b2). j.scriptstate and that for all matching postMessages
that they also have to be term-equivalent up to θ and that the window structure is equal in both browsers,
we have that either the same postMessage is retrieved from scriptinputs or none in both browsers.
The script now constructs a postMessage that is sent to exactly the same window in both browsers and
that requires that the receiver origin has to be 〈fwddomain,S〉 The postMessage is only sent to this
origin, we have that γ-equivalence cannot be violated even if a k ∈ K is contained in the postMessage
(as there are no constraints concerning K in the script inputs of this origin).
We now have that S′1 and S′2 are γ-equivalent under (θ,H), E ′1 and E ′2 are β-equivalent under (θ,H,L),
and as exactly the same number of nonces is chosen, we have that the new configuration is α-
equivalent.

expectEIA: In this case, the script retrieves the result of a postMessage from scriptinputs. As we know
that S1(b1). j.scriptstate
θ S2(b2). j.scriptstate and that for all matching postMessages that
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they also have to be term-equivalent up to θ and that the window structure is equal in both browsers,
we have that either the same postMessage is retrieved from scriptinputs or none in both browsers.
The script chooses one nonce in both processing steps and creates an XHR addressed to its own origin,
which is in both cases either (a) equal and 〈dr1,S〉 or 〈midr2,S〉 or it is (b) 〈dr1,S〉 in b1 and 〈midr2,S〉
in b2. The path is the (static) string /login. The script saves the freshly chosen nonce (referencing
the XHR) and a (static) value for q in its scriptstate.
In Case (a), we have that the command is term-equivalent under proto-tags θ and hence, the browser
emits a DNS request which is term-equivalent, and appends the XHR in pendingDNS. Hence, we
have γ-equivalence under (θ,H) for the new states, β-equivalence under (θ,H,L) for the new events,
and α-equivalence for the new configuration.
For Case (b), we note that for j ∈ {1,2}, the body g j of the prepared HTTP request may contain an
(encrypted) identity assertion such that

g j[eia]∼ encs(sig(〈encs(〈dr j,∗〉,∗),∗,fwddomain〉,∗),∗) .

As the receiver of this message is always determined to be dr j (in b j) and the Origin header is set
accordingly, we have that the prepared HTTP request is δ-equivalent under θ. The (prepared) request
is added to pendingDNS in the browser’s state, we set H ′ := H ∪{n} with n being the nonce that the
browser chooses for λ1. The browser emits a DNS request that fulfills Condition 1b of Definition 80.
In no case is a k ∈ K, which can only be stored in scriptstate.tagKey used to construct either
output events or state changes. Therefore, we have γ-equivalence under (θ,H ′) for the new states. As
the request added to pendingDNS in the browser’s state fulfills Condition 12b, we have β-equivalence
under (θ,H ′,L) for the new events, and α-equivalence for the new configuration.

2. S1(b1). j.origin ∈ {〈dr1,S〉,〈dr2,S〉} and S1(b1). j.script 6≡ script_rp. It immediately follows that
S1(b1). j.script ≡ script_rp_redir in this case. This script always outputs the same command to
the browser: it commands to navigate its window to a URL saved as the script’s scriptstate, which is
term-equivalent under proto-tags between the two browsers. As the HTTP request that is generated (and
then stored in pendingDNS) contains neither an Origin nor a Referer header, they are term-equivalent
under θ if the domain of this HTTP request is not CHALLENGE23 and δ-equivalent otherwise.
The resulting states of both browsers are therefore γ-equivalent under θ.
In both cases (challenged or not), we have that E(1)

out 
θ E(2)
out and hence Condition 1a of Definition 80 is

fulfilled, or the output messages fulfill Condition 1e.
Clearly, no k ∈ K is contained in the script’s state, in the generated DNS request, or the HTTP request.
In both processing steps, exactly the same number of nonces is chosen. We therefore have α-equivalence.

3. S1(b1). j.origin= 〈fwddomain,S〉.
It immediately follows that S1(b1). j.script≡ script_fwd in this case.
As above, we have that either S1(b1). j.scriptstate.q = S2(b2). j.scriptstate.q or the script’s state
contains a tag and is therefore in an illegal state (in which case the script will stop without producing
output or changing its state).
With the equivalence of the window structures we have that the target variable in the algorithm of
script_fwd in both runs points to a window containing the same script in both runs.
We can now distinguish between the possible values of S1(b1). j.scriptstate.q =
S2(b2). j.scriptstate.q:
start In this case, a postMessage with exactly the same contents is sent to the same window. We therefore

trivially have γ-equivalence under (θ,H) on the states in this case. No output events are generated,
and no nonces are used. Therefore, α-equivalence holds on the new states.

expectTagKey In this case, for any change in the state to occur, a postMessage containing some term
under the (dictionary) key tagKey sent from exactly the same window has to be in scriptinputs. From
Condition 12(e)vi of Definition 79 we know that in scriptinputs either such a postMessage exists in
both browsers or in none.

23This also applies when the browser challenged before, i.e., challenge in the browser’s state is ⊥.
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As the tag contained in the postMessages is term-equivalent under proto-tags theta, we have that
the RP domain inside the tag is either the same in both processing steps or dr1 in b1 and dr2 in b2.
Additionally, eia (if contained in the URL parameters in the location of the script) is term-equivalent
under proto-tags theta. It follows that the resulting postMessage, which contains eia, is either delivered
to the receiver (which is either equal in both browsers or dr1 in b1 and dr2 in b2). Additionally, no
k ∈K can be contained in the eia, as it is taken from the document’s location. In any case, the resulting
browser states are γ-equivalent under (θ,H).
As no output events are produced, we have that E ′1 and E ′2 are β-equivalent under (θ,H,L). As exactly
the same number of nonces are chosen (in fact, no nonces are chosen), we have that the resulting
configuration is α-equivalent.

4. S1(b1). j.origin 6∈ {〈dr1,S〉,〈dr2,S〉,〈fwddomain,S〉}.
Here, we assumte that the script in this case is the the attacker script Ratt, as it subsumes all other scripts.
We first observe, that its “view”, i.e., the input terms it gets from the browser, is term-equivalent up to
proto-tags θ between (the scripts running in) S1(b1) and S2(b2). From the equivalence definition of states
(Definition 79) we can see that:
• The window tree has the same structure in both processing steps. All window terms are equal (up to

their documents subterm). All same-origin documents contain only subterms that are term-equivalent
up to θ (again, up to their subwindows subterms). All non-same-origin documents become limited
documents and therefore are equal (up to the subwindows, limited documents only contain the sub-
windows and the document nonce).
• The subterms cookies, localStorage, sessionStorage, scriptstate, and scriptinputs are

term-equivalent up to θ.
• The subterms ids and secrets are equal.
• There is not k ∈ K as a subterm (except as keys for tags) in this view. We therefore have that no such

term can be contained in the output command of the script, or in the new scriptstate.
As the input of the script as a whole is term-equivalent up to θ, does not contain any placeholders in Vscript,
and does not contain a key for any tag in θ, we have that the output of the script, i.e., scriptstate′, cookies′,
localStorage′, sessionStorage′, command′, must be term-equivalent up to proto-tags θ (in particular, the
same number of nonces is replaced in both output terms in both processing steps). Note that the first
element of the command output must be equal between the two browsers (as it must be string) or otherwise
the browsers will ignore the command in both processing steps.
Analogously, we see that the input does not contain any subterm l ∈ L.
We can now distinguish the possible commands the script can output (again, all parameters for these
commands must be term-equivalent under θ):
(a) Empty or invalid command: In this case, the browser outputs no message and its state is not changed.

α-equivalence is therefore trivially given.
(b) 〈HREF,url,hrefwindow,noreferrer〉: Here, the browser calls GETNAVIGABLEWINDOW to deter-

mine the window in which the document will be loaded. Due to the synchronous window structure
between the two browsers, the result will be the same in both processing steps (which may include
creating a new window with a new nonce).
Now, a new HTTP(S) request is assembled from the URL. A Referer header is added to the request
from the document’s current location (which is term-equivalent under θ) and given to the SEND
function. There, if the host part of the URL is CHALLENGE, it will be replaced by dr1 in b1 and by
dr2 in b2. (In this case, the α-equivalence in the following holds for H ′ := H ∪{n}, where n is the
nonce of the generated HTTP request. Otherwise, it holds for H ′ := H.). Afterwards, for domains that
are in the sts subterm of the browser’s state, the request will be rewritten to HTTPS. Any cookies for
the domain in the requests are added. Note that both latter steps never apply to requests to dr1 or dr2
as per definition, there are no entries for these domains in sts and cookies.. The requests, which are
δ-equivalent under θ are added to the pending DNS requests and fulfill Condition 12b of Definition 79.
A DNS request is created in accordance with Condition 1b or Condition 1a of Definition 80. The same
number of nonce is chosen in both processing steps, and therefore α-equivalence holds.

(c) 〈IFRAME,url,window〉 This case is completely parallel to Case 4b.
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(d) 〈FORM,url,method,data,hrefwindow〉 This case is parallel to Case 4b, except that an Origin header is
added. Its properties are the same as those of the Referer header in Case 4b.

(e) 〈SETSCRIPT,window,script〉 In this case, the same document is manipulated in both processing steps
in the same way. Note that only same-origin documents, i.e., attacker documents, can be manipulated.
No output event is generated, and no nonces are chosen. α-equivalence is given trivially.

(f) 〈SETSCRIPTSTATE,window,scriptstate〉 This case is parallel to Case 4e.
(g) 〈XMLHTTPREQUEST,url,method,data,xhrreference〉 This case is parallel to Case 4b with the addition

of the Origin header (see Case 4d) and the addition of a reference parameter, which is transferred into
pendingDNS inside the browser (xhrreference). Therefore, for γ-equivalence, it is important to note
that this reference can only be a nonce (and therefore is equal in both processing steps). Otherwise,
the browser stops in both processing steps.

(h) 〈BACK,window〉, 〈FORWARD,window〉, and 〈CLOSE,window〉 If the script outputs one of these com-
mands, in both processing steps, the browsers will be manipulated in exactly the same way. No output
events are generated, and no nonces are chosen.

(i) 〈POSTMESSAGE,window,message,origin〉 In this case, a term containing message (term-equivalent
under θ) is added to a document’s scriptinput term. If the origin is ⊥, the same term will be
added to the same document in both processing steps. Otherwise, the term may only be added to
one document (if, for example, the origin is 〈dr1,S〉 and the target documents in both browsers
have the domain dr1 and dr2, respectively). In this case, however, the equivalence defined on the
scriptinputs is preserved. This would only be possible for script_rp and only if the sender origin
was 〈fwddomain,S〉.

2 (navigate to URL): In this case, a new window is opened in the browser and a document is loaded from url.
The states of both browsers are changed in the same way except if the domain of the URL is CHALLENGE. In
both cases, a new (at this point empty) window is created and appended the windows subterm of the browsers.
This subterm is therefore changed in exactly the same way.
A new HTTP request is created and appended to pendingDNS. The generated requests in both processing steps
can only differ in the host part iff the domain is CHALLENGE. In this case, in b1 the domain is replaced by dr1
and in b2 by dr2 and the α-equivalence in the following holds for H ′ := H{n}, where n is the nonce of the
generated HTTP request. In both cases, the Condition 12b of Definition 79 is satisfied.
The request cannot contain any l ∈ L or k ∈ K.
The generated DNS requests are equivalent under Condition 1b or Condition 1a of Definition 80.
In both processing steps, three nonces are chosen.
Therefore, we have α-equivalence for (S′1,E

′
1,N

′
1) and (S′2,E

′
2,N

′
2).

3 (reload document): Here, an existing document is retrieved from its original location again. From the definition
of γ-equivalence under (θ,H) we can see that whatever document is reloaded, its location is either (I) term-
equivalent under θ, or (II) it is term-equivalent under θ except for the domain, which is dr1 in b1 and dr2 in
b2.
We note that in either case, the requests are constructed from the location and referrer properties of the
document that is to be reloaded, and therefore, cannot contain any k ∈ K.
In Case (I), we note that the domain cannot be CHALLENGE. If the document is reloaded, the same DNS request
is issued in both browsers (therefore, β-equivalence under (θ,H,L) is given), and an entry is added to the
pending DNS messages such that we have γ-equivalence under (θ,H). The same number of nonces is chosen
in both runs, and we have α-equivalence.
Case (II) is similar, but we have H ′ := H ∪{n}, where n is the nonce of the HTTP request that is added to the
pending DNS entries. Then we have γ-equivalence under (θ,H ′). Again, the same number of nonces is chosen
and we have α-equivalence.

Other Any other message is discarded by the browsers without any change to state or output events.

Case p1 is some attacker:
Here, only Case 1a from Definition 80 can apply to the input events, i.e., the input events are term-equivalent under

proto-tags θ. This implies that the message was delivered to the same attacker process in both processing steps. Let A
be that attacker process. With Case 10 of Definition 79 we have that S1(A)
θ S2(A) and with Case 9 and Case 3 of
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Definition 80 it follows immediately that the attacker cannot decrypt any of the tags in θ in its knowledge. Further, in
the attackers state there are no variables (from Vprocess).

With the output term being a fixed term (with variables) τprocess ∈ TN ({x}∪Vprocess) and x being S1(A) or S2(A),
respectively, and there is no subterm l ∈ L contained in either S1(A) or S2(A) (Condition 11 of Definition 79), it is easy
to see that the output events are β-equivalent under θ, i.e., E(1)

out 
θ E(2)
out , there are not k ∈ K contained in the output

events (except as encryption keys for tags) and the used nonces are the same, i.e., N′1 = N′2. The new state of the attacker
in both processing steps consists of the input events, the output events, and the former state of the event, and, as such,
is β-equivalent under proto-tags θ. Therefore we have α-equivalence on the new configurations.

ut

This proves Theorem 3. �
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