Ideal Key Derivation and Encryption
in Simulation-Based Security*

Ralf Kiisters and Max Tuengerthal

University of Trier, Germany
{kuesters, tuengerthal}@uni-trier.de

Abstract. Many real-world protocols, such as SSL/TLS, SSH, IPsec, DNSSEC,
IEEE 802.111i, and Kerberos, derive new keys from other keys. To be able to an-
alyze such protocols in a composable way, in this paper we extend an ideal func-
tionality for symmetric and public-key encryption proposed in previous work by
a mechanism for key derivation. We also equip this functionality with message
authentication codes (MACs), digital signatures, and ideal nonce generation. We
show that the resulting ideal functionality can be realized based on standard cryp-
tographic assumptions and constructions, hence, providing a solid foundation for
faithful, composable cryptographic analysis of real-world security protocols.
Based on this new functionality, we identify sufficient criteria for protocols to
provide universally composable key exchange and secure channels. Since these
criteria are based on the new ideal functionality, checking the criteria requires
merely information-theoretic or even only syntactical arguments, rather than in-
volved reduction arguments.

As a case study, we use our method to analyze two central protocols of the
IEEE 802.11i standard, namely the 4-Way Handshake Protocol and the CCM
Protocol, proving composable security properties. As to the best of our knowl-
edge, this constitutes the first rigorous cryptographic analysis of these protocols.

Keywords: security protocols, compositional analysis, simulation-based secu-
rity

1 Introduction

Security protocols employed in practice, such as SSL/TLS, SSH, IPsec, DNSSEC,
IEEE 802.11i, and Kerberos, are very complex, and hence, hard to analyze. In order
to tame this complexity, a viable approach is composable security analysis based on the
framework of simulation-based security, in particular universal composability/reactive
simulatability [8, 30]: Higher-level components of a protocol are designed and analyzed
based on lower-level idealized components, called ideal functionalities. Composition
theorems then allow to replace the ideal functionalities by their realizations, altogether
resulting in a system without idealized components. Typically, the higher-level compo-
nents are shown to realize idealized functionalities themselves. Hence, they can be used
as low-level idealized components in even more complex systems.

* This work was partially supported by the DFG under Grant KU 1434/5-1 and KU 1434/6-1.

This appealing approach has so far, however, been only rarely applied to real-world
protocols (see the related work). One crucial obstacle has been the lack of suitable ide-
alized functionalities and corresponding realizations for the most basic cryptographic
primitives. While functionalities for public-key encryption and digital signatures have
been proposed early on [8, 30, 23], only recently a functionality for symmetric encryp-
tion, which we denote by ¢, here, was proposed [25]. This functionality allows parties
to generate symmetric and public/private keys and to use these keys for ideal encryption
and decryption. The encrypted messages may contain symmetric keys and parties are
given the actual ciphertexts, as bit strings. To bootstrap encryption with symmetric keys,
Fenc also enables parties to generate and use pre-shared keys as well as public/private
key pairs.

However, by itself ¢, is still insufficient for the analysis of many real-world pro-
tocols. The main goal of our work is therefore to augment this functionality (and its
realization) with further primitives employed in real-word protocols and to develop
suitable proof techniques in order to be able to carry out manageable, composable, yet
faithful analysis of such protocols.

Contribution of this Paper. The first main contribution of this paper is to extend Fepc
by a mechanism for key derivation, which is employed in virtually every real-word secu-
rity protocol, as well as by MACs, digital signatures, and nonce generation; we call the
new functionality Ferypio. We show that, for a reasonable class of environments, Ferypro
can be realized based on standard cryptographic assumptions and constructions: IND-
CCA secure or authenticated encryption, UF-CMA secure MACs and digital signatures,
and pseudo-random functions for key derivation, which are common also in implemen-
tations of real-world protocols. To prove this result, we extend the hybrid argument for
Fene In [25]. Since Ferypio is a rather low-level ideal functionality and its realization is
based on standard cryptographic assumptions and constructions, it is widely applica-
ble (see below and [25,24]) and allows for a precise modeling of real-word security
protocols, including precise modeling of message formats on the bit level.

The second main contribution of our paper are criteria for protocols to provide uni-
versally composable key exchange and secure channels. These criteria are based on
our ideal functionality Fcrypro, and therefore, can be checked merely using information-
theoretic arguments, rather than much more involved and harder to manage reduction
proofs; often even purely syntactical arguments suffice, without reasoning about prob-
abilities. Indeed, the use of Ferypo tremendously simplifies proofs in the context of
real-world security protocols, as demonstrated by our case study (see below), and in
other contexts (see, e.g., [25,24]). Without Fyp, such proofs quickly become unman-
ageable.

The third main contribution of this paper is a case study in which we analyze cen-
tral components of the wireless networking protocol WPA2, which implements the
standard IEEE 802.11i [20]. More precisely, we analyze the 4-Way Handshake pro-
tocol (4WHS) for key exchange and the CCM Protocol (CCMP) of the pre-shared key
mode of WPA2 (WPA2-PSK) for secure channels. Based on Ferypo and our criteria,
we show that 4WHS realizes a universally composable key exchange functionality and
that 4WHS with CCMP realizes a universally composable secure channel functional-
ity; we note that 4WHS with TKIP (instead of CCMP) has recently been shown to be

insecure [32,29]. Since we use standard cryptographic assumptions and constructions,
our modeling of 4WHS and CCMP, including the message formats, is very close to
the actual protocol. As to the best of our knowledge, this constitutes the first rigorous
cryptographic analysis of these protocols. The framework presented in this paper would
also allow us to analyze other real-world security protocols in a similar way, including
several modes of Kerberos, SSL/TLS, DNSSEC, and EAP.

Structure of this Paper. In Section 2, we first recall the model for simulation-based
security that we use. The functionality Frypo and its realization are presented in Sec-
tion 3. The criteria for secure key exchange and secure channel protocols are established
in Section 4. Our case study is presented in Section 5. We conclude with related work
in Section 6. Further details and all proofs are provided in our technical report [26].

2 Simulation-based Security

In this section, we briefly recall the IITM model for simulation-based security (see
[22] for details). In this model, security notions and composition theorems are formal-
ized based on a relatively simple, but expressive general computational model in which
IITMs (inexhaustible interactive Turing machines) and systems of IITMs are defined.
While being in the spirit of Canetti’s UC model [10], the IITM model has several ad-
vantages over the UC model and avoids some technical problems, as demonstrated and
discussed in [22, 23, 25, 19].

2.1 The General Computational Model

The general computational model is defined in terms of systems of IITMs. An in-
exhaustible interactive Turing machine (IITM) M is a probabilistic polynomial-time
Turing machine with named input and output tapes. The names determine how differ-
ent IITMs are connected in a system of IITMs. An IITM runs in one of two modes,
CheckAddress and Compute. The CheckAddress mode is used as a generic mecha-
nism for addressing copies of IITMs in a system of IITMs, as explained below. The
runtime of an IITM may depend on the length of the input received so far and in ev-
ery activation an II'TM may perform a polynomial-time computation; this is why these
ITMs are called inexhaustible. However, in this extended abstract we omit the details of
the definition of IITMs, as these details are not necessary to be able to follow the rest
of the paper.

A system S of ITMs is of the form S = My | --- [My| 'M{|--- | |M;, where the M;
and M ; are IITMs such that the names of input tapes of different IITMs in the system are
disjoint. We say that the machines M’, are in the scope of a bang operator. This operator
indicates that in a run of a system an unbounded number of (fresh) copies of a machine
may be generated. Conversely, machines which are not in the scope of a bang operator
may not be copied. Systems in which multiple copies of machines may be generated
are often needed, e.g., in case of multi-party protocols or in case a system describes the
concurrent execution of multiple instances of a protocol.

In a run of a system S at any time only one IITM is active and all other IITMs
wait for new input; the first [ITM to be activated in a run of S is the so-called master

IITM, of which a system has at most one. To illustrate runs of systems, consider, for
example, the system S = M, | |M, and assume that M, has an output tape named c,
M, has an input tape named c, and M| is the master [ITM. (There may be other tapes
connecting M; and M,.) Assume that in the run of S executed so far, one copy of M,
say M, has been generated and that M| just sent a message m on tape c. This message
is delivered to M} (as the first, and, in this case, only copy of M»). First, M runs in the
CheckAddress mode with input m; this is a deterministic computation which outputs
“accept” or “reject”. If M, accepts m, then M), gets to process m and could, for example,
send a message back to M;. Otherwise, a new copy M} of M, with fresh randomness is
generated and M’ runs in CheckAddress mode with input m. If M7} accepts m, then M7
gets to process m. Otherwise, M7 is removed again, the message m is dropped, and the
master IITM is activated, in this case M, and so on. The master IITM is also activated
if the currently active II'TM does not produce output, i.e., stops in this activation without
writing to any output tape. A run stops if the master IITM does not produce output (and
hence, does not trigger another machine) or an II'TM outputs a message on a tape named
decision. Such a message is considered to be the overall output of the system.

We will consider so-called well-formed systems, which satisfy a simple syntactic
condition that guarantees polynomial runtime of a system.

Two systems P and Q are called indistinguishable (P = Q) iff the difference be-
tween the probability that outputs 1 (on the decision tape) and the probability that Q
outputs 1 (on the decision tape) is negligible in the security parameter.

2.2 Notions of Simulation-Based Security

We need the following terminology. For a system S, the input/output tapes of IITMs
in S that do not have a matching output/input tape are called external. These tapes
are grouped into I/O and network tapes. We consider three different types of systems,
modeling i) real and ideal protocols/functionalities, ii) adversaries and simulators, and
iii) environments: Protocol systems and environmental systems are systems which have
an I/O and network interface, i.e., they may have I/O and network tapes. Adversarial
systems only have a network interface. Environmental systems may contain a master
IITM. We can now define strong simulatability; other equivalent security notions, such
as black-box simulatability and (dummy) UC can be defined in a similar way [22].

Definition 1 ([22]). Let P and F be protocol systems with the same I/O interface, the
real and the ideal protocol, respectively. Then, P realizes F (P < F) iff there exists
an adversarial system S (a simulator or ideal adversary) such that the systems P and
S|F have the same external interface and for all environmental systems E, connecting
only to the external interface of P (and hence, S|F) it holds that E|P = E| S| F.

2.3 Composition Theorems

We restate the composition theorems from [22]. The first composition theorem handles
concurrent composition of a fixed number of protocol systems. The second one guaran-
tees secure composition of an unbounded number of copies of a protocol system. These
theorems can be applied iteratively to construct more and more complex systems.

Theorem 1 ([22]). Let Py, P2, F1, T2 be protocol systems such that Py and P, as well
as F1 and T only connect via their I/O interfaces, P | P> and 51| F, are well-formed,
and P; < Fi, fori € {1,2). Then, P | Py < F1 | Fo.

In the following theorem, ¥ and # are the so-called session versions of # and P,
which allow an environment to address different sessions of ¥ and %, respectively, in
the multi-session versions !# and !$ of ¥ and P.

Theorem 2 ([22]). Let P, F be protocol systems such that P < F. Then, P <F.

3 Our Crypto Functionality

In this section, we describe our ideal crypto functionality #erypio and show that it can be
realized under standard cryptographic assumptions (see [26] for details).

As mentioned in the introduction, Ferypo €Xtends Fene, proposed in [25], by key
derivation, MACs, digital signatures, and ideal nonce generation; also pre-shared keys
can now be used just as other symmetric keys. More precisely, parties can use Ferypro
i) to generate symmetric keys, including pre-shared keys, ii) to generate public/private
keys, iii) to derive symmetric keys from other symmetric keys, iv) to encrypt and de-
crypt bit strings (public-key encryption and both unauthenticated and authenticated
symmetric encryption is supported), v) to compute and verify MACs and digital sig-
natures, and vi) to generate fresh nonces, where all the above operations are done in an
ideal way. All symmetric and public keys can be part of plaintexts to be encrypted un-
der other symmetric and public keys. We emphasize that derived keys can be used just
as other symmetric keys. We also note that the functionality can handle an unbounded
number of commands for an unbounded number of parties with the messages, cipher-
texts, MACs, etc. being arbitrary bit strings of arbitrary length. We leave it up to the
protocol that uses Ferypro how to interpret (parts of) bit strings, e.g., as length fields,
nonces, ciphertexts, MACs, non-interactive zero-knowledge proofs etc. Since users of
Ferypto are provided with actual bit strings, Ferypio can be combined with other func-
tionalities too, including those of interest for real-word protocols, e.g., certification of
public keys (see, e.g., [9]).

3.1 The Ideal Crypto Functionality

The ideal crypto functionality Ferypo iS parametrized by what we call a leakage al-
gorithm L, a probabilistic polynomial time algorithm which takes as input a security
parameter 17 and a message m, and returns the information that may be leaked about m.
Typical examples are i) L(17,m) = 0" and ii) the algorithm that returns a random bit
string of length |m|. Both leakage algorithms leak exactly the length of m. The function-
ality Ferypio is also parameterized by a number n which defines the number of roles in
a protocol that uses Ferypo (€.8., n = 3 for protocols with initiator, responder, and key
distribution server); Ferypto has one I/O input and output tape for each role.

In Ferypro, symmetric keys are equipped with types. Keys that may be used for au-
thenticated encryption have type authenc-key, those for unauthenticated encryption
have type unauthenc-key. We have the types mac-key for MAC keys and pre-key for

keys from which new keys can be derived. All types are disjoint, i.e., a key can only
have one type, reflecting common practice that a symmetric key only serves one pur-
pose. For example, a MAC key is not used for encryption and keys from which other
keys are derived are typically not used as encryption/MAC keys.

While users of Ferypro, and its realization, are provided with the actual public keys
generated within Fypo (the corresponding private keys remain in Ferypro), they do not
get their hands on the actual symmetric keys stored in the functionality, but only on
pointers to these keys, since otherwise no security guarantees could be provided. These
pointers may be part of the messages given to Ferypio for encryption. Before a mes-
sage is actually encrypted, the pointers are replaced by the keys they refer to. Upon
decryption of a ciphertext, keys embedded in the plaintext are first turned into pointers
before the plaintext is given to the user. In order to be able to identify pointers/keys,
we assume pointers/keys in plaintexts to be tagged according to their types. We speak
of well-tagged messages. For real-world protocols, including those mentioned in the
introduction, it is typically possible to define tagging in such a way that the message
formats used in these protocols is captured precisely on the bit level, as demonstrated
by our case study in Section 5.

A user of Forypo is identified, within ¥y, by the tuple (p, Isid, r), where p is
a party name, r < n a role, and Isid a local session ID (LSID), which is chosen and
managed by the party itself. In particular, on the tape for role r, Frypio €Xpects requests
to be prefixed by tuples of the form (p, Isid), and conversely Ferypio prefixes answers
with (p, Isid).

The functionality Frypo keeps track of which user has access to which symmetric
keys (via pointers) and which keys are known to the environment/adversary, i.e., have
been corrupted or have been encrypted under a known key, and as a result became
known. For this purpose, among others, Fcrypro maintains a set K of all symmetric keys
stored within Ferypio, @ set Kinown S K of known keys, and a set Kunknown := K \ Kinown
of unknown keys.

Before any cryptographic operation can be performed, Ferypo €Xpects to receive (de-
scriptions of) algorithms from the ideal adversary for symmetric and public-key encryp-
tion/decryption as well as the generation and verification of MACs and digital signa-
tures. Also, Ferypto €Xpects to receive public/private key pairs for encryption/decryption
and signing/verification for every party from the adversary. The adversary may decide to
statically corrupt a public/private key of a party at the moment she provides it to Ferypro-
In this case Ferypo records the public/private key of this party as corrupted. We do not
put any restrictions on these algorithms and keys; all security guarantees that Ferypro
provides are made explicit within Ferypo Without relying on specific properties of these
algorithms. As a result, when using Ferypio in the analysis of systems, one can abstract
from these algorithms entirely. We now sketch the operations that Frypo provides.

Generating fresh, symmetric keys [(New,?)]. A user (p,Isid,r) can ask Ferypio tO
generate a new key of type ¢ € {authenc-key, unauthenc-key, mac-key, pre-key}. The
request is forwarded to the adversary who is supposed to provide such a key, say the
bit string k. The adversary can decide to corrupt k right away, in which case k is added
to Kinown, and otherwise & is added to Kynknown. However, if k is uncorrupted, before
adding k t0 Kunknown» Ferypto Verifies that k is fresh, i.e., k does not belong to K. If k is

corrupted, before adding & to Kinown, Ferypro Verifies that k does not belong to Kunknown-
If Ferypro accepts k, a new pointer ptr to k is created (by increasing a counter) and re-
turned to (p, Isid, r). We emphasize that the difference between Kinown and Kinknown 1S
not whether or not the adversary knows the value of a key (it provides these values any-
way). The point is that operations performed with unknown keys are ideal (see below).
In the realization of Ferypio, however, keys in Kugknown Will of course not be known to
the adversary.

Establishing pre-shared keys [(GetPSK, ¢, name)]. This request is similar to (New, f).
However, if Ferypio already recorded a key under (¢, name), a new pointer to this key is
returned. In particular, if different users invoke this command with the same name and
type, they are provided with pointers to the same key. This allows users to establish
shared keys: For example, for WPA (see Section 5), requests of suppliers (e.g., laptops)
and authenticators (e.g., access points) are of the form (GetPSK, 1, kid), where kid is a
key ID (instances of) suppliers and authenticators obtain from the environment (e.g., a
system administrator) upon initialization.

Key derivation [(Derive, ptr,t, s)]. A user (p,Isid, r) can ask to derive a key of type
t € {authenc-key, unauthenc-key, mac-key, pre-key} from a seed s (an arbitrary bit
string) and a key, say k, of type pre-key the pointer ptr, which has to belong to the user,
points to. If there already exists a key derived from k and s—a fact that Feryp0 keeps
track of—, a new pointer to this key is returned. Otherwise, a new key, similarly to the
request (New,) is generated. However, the adversary may not corrupt this key; it is
considered to be unknown if and only if k is unknown.

Encryption [(Enc, ptr, x)] and decryption [(Dec, ptr, y)]. We concentrate on authen-
ticated encryption and decryption (see [26] for unauthenticated and public-key encryp-
tion and decryption). A user (p,Isid,r) can ask to encrypt a well-tagged message x
using a pointer ptr that has to belong to the user and points to a key, say k, of type
authenc-key. We first consider the case that k € Kynknown. First, all pointers in x, which
again have to belong to the user, are replaced by the actual keys, resulting in a message
x’. Then, the leakage x = L(1", x") of x’ is encrypted under k using the encryption al-
gorithm previously provided by the adversary (see above). The resulting ciphertext y
(if any) is returned to the user and (x, y) is stored by Ferypio for later decryption of y
under k. Decryption of a ciphertext y, an arbitrary bit string, under a key & (as above),
in fact only succeeds if for y exactly one pair of the form (x’, y) is stored in Ferypio. If
k € Kinown, the encryption and decryption algorithms provided by the adversary are
applied to x” (rather than to x = L(17, x’)) and y, respectively.

Computing and verifying MACs [(Mac, ptr, x) and (MacVerify, ptr, x,0)]. A user
(p,Isid,r) can ask Ferypro t0 MAC an arbitrary (uninterpreted) bit string x using a
pointer ptr that has to belong to the user and points to a key, say k, of type mac-key.
Then, Ferypro computes the MAC of x under k using the MAC algorithm previously
provided by the adversary. The resulting MAC o (if any) is returned to the user. If
k € Kunknown> Ferypto records x for later verification with k; o is not recorded since we
allow an adversary to derive a new MAC from a given one on the same message.

For verification, Ferypto Tuns the MAC verification algorithm previously provided by
the adversary on x, o, and k. If k € Kinown, Ferypto returns the result of the verification

to the user. If k € Kynknown, this is done too, but success is only returned if x previously
has been recorded for k.

Generating fresh nonces [(NewNonce)]. Similarly to generating fresh keys, nonces
can be generated by users, where uncorrupted nonces are guaranteed to not collide.

Further operations. For further operations, including computing and verifying digital
signatures, requests to obtain public keys, storing and retrieving of symmetric keys,
checking the corruption status of keys, and checking whether two pointers point to the
same key, we refer the reader to [26].

As illustrated by our case study, Ferypio 1S @ convenient and easy to use tool for analyzing
(real-world) security protocols. We note that, as explained above, corruption is modeled
on a per key basis. This allows to model many types of corruption, including corruption
of single sessions and of complete parties (see Section 5 for an example).

3.2 Realizing the Ideal Crypto Functionality

Let 2unauthencs Zauthenc» 2pub be schemes for symmetric and public-key encryption, re-
spectively, 2, be a MAC scheme, 2, be a digital signature scheme, and F = {F };en
be a family of pseudo-random functions with F,,: {0, 1}7x{0, 1}* — {0, 1}7 for all € N.
For simplicity of presentation, we assume keys to be chosen uniformly at random from
{0, 1}

These schemes induce a realization Pcrypro Of Ferypro in the obvious way: The real-
ization Prypo maintains keys and pointers to keys in the same way as Frypto does, but
it does not maintain the sets Kinown and Kunknown. However, it is recorded whether a
key is corrupted. Uncorrupted keys are honestly generated within $yp, Whereas cor-
rupted keys are provided by the adversary. All ideal operations are replaced by their real
counterparts in the natural way. Key derivation for a key k and a seed s is realized by
computing F,, on k and s.

One cannot prove that Perypo Tealizes Ferypio for standard assumptions about the
symmetric encryption schemes 2ynauthene and Zyauthenc, Namely IND-CCA security and
authenticated encryption (IND-CPA and INT-CTXT security), respectively, because it
is easy to see that such a theorem does not hold in the presence of environments that
may produce so-called key cycles (see, e.g., [6,2]) or cause the so-called commitment
problem (see, e.g., [2]). Therefore, similar to [25] and [2], we restrict the class of en-
vironments that we consider basically to those environments that do not produce key
cycles or cause the commitment problem. More precisely, to formulate such a class of
environments that captures what is typically encountered in applications, we observe,
as was first pointed in [2], that once a key has been used in a protocol to encrypt a
message, this key is typically not encrypted anymore in the rest of the protocol. Let us
call these protocols standard; for example, WPA can trivially be seen to be standard
(see Section 5). This observation can be generalized to used-order respecting environ-
ments, which we formulate based on Ferypio: An environment & (for Ferypro) is called
used-order respecting if it happens only with negligible probability that, in a run of
&E| Ferypto» an unknown key k (i.e., k is marked unknown in Feryp0) Which has been used
at some point (for encryption or key derivation, in case of keys of type unauthenc-key

also for decryption) is encrypted itself by an unknown key &’ used for the first time later
than k. Clearly, such environments do not produce key cycles among unknown keys,
with overwhelming probability. (We do not need to prevent key cycles among known
keys.) We say that an environment & does not cause the commitment problem (is non-
committing), if it happens only with negligible probability that, in a run of &| Feryptos
after an unknown key k has been used to encrypt a message or to derive a new key, k
becomes known later on in the run, i.e., is marked known by Ferypio. It is easy to see that
for standard protocols, as introduced above, the commitment problem does not occur.

We can now state the theorem, which shows that Fypio exactly captures IND-CCA
security, authenticated encryption, and UF-CMA security. In the theorem, instead of
explicitly restricting the class of environments introduced above, we use a functionality
¥ that provides exactly the same I/O interface as F¢rypio (and hence, Perypio), but before
forwarding requests t0 Ferypio/Perypto Checks whether the used-order is still respected
and the commitment problem is not caused. Otherwise, ¥ * raises an error flag and from
then on blocks all messages, i.e., effectively stops the run.

Theorem 3. Let Xynauthenc, Zauthenc, Zpub be encryption schemes as above, where the do-
main of plaintexts is the set of well-tagged bit strings. Let 2, be a MAC scheme, 2o be
a digital signature scheme, and F be a pseudo-random function family as above. Let L
be a leakage algorithm which leaks exactly the length of a message. Then, F | Perypio <
F* | Ferypto if and only if Zunauthene and Zpuy, are IND-CCA, Zyythenc is IND-CPA and INT-
CTXT, and X, and Xy are UF-CMA secure. (The direction from right to left holds for
any plaintext domains of the encryption schemes.)

Since derived keys can be encrypted and used as encryption keys, the security of
encryption depends on the security of key derivation and vice versa. Therefore, in the
proof of the above theorem we need to carry out a single hybrid argument, intertwining
both encryption and key derivation (see [26] for details).

The following corollary shows that if a protocol system ¥ that uses Ferypo 1S nOR-
committing and used-order respecting, i.e., &|P is a non-committing, used-order re-
specting environment for all environment systems &, then * can be omitted. As men-
tioned above, most protocols, including standard protocols, have this property and this
can typically be easily checked by inspection of the protocol (see Section 5 for an ex-
ample).

Corollary 1. Let 2ynauthenc, Zauthencs 2pubs 2macr Zsig» I'» and L be given as in Theorem 3.
Let P be a non-committing, used-order respecting protocol system. Then, P |Perypro <
P Ferypto if Zunauthene and 2pup, are IND-CCA, Zyyhence is IND-CPA and INT-CTXT, and
2mac and 2g are UF-CMA secure.

As demonstrated in the following sections, using Theorem 3 and Corollary 1 protocols
can first be analyzed based on Frypo and then Ferypo can be replaced by its realization
Perypro- We note that the joint state composition theorems for public-key encryption and
symmetric encryption under pre-shared keys in [25] carry over to Ferypro. That is, we
can prove that a—so called—joint state realization of Ferypo realizes the multi-session
version of Ferypro. However, as explained in Section 4, we do not use composition with
joint state in this paper.

4 Applications to Key Exchange and Secure Channels

In this section, we consider a general class of key exchange and secure channel pro-
tocols which use the functionality Ferypio (Or its realization Perypio) and develop crite-
ria to prove universally composable security for such protocols. Since our criteria are
based on Ferypo, proving the criteria merely requires information-theoretic arguments
or purely syntactical arguments (without reasoning about probabilities), rather than in-
volved cryptographic reduction proofs.

Our criteria are formulated w.r.t. multiple protocol sessions. Alternatively, we could
formulate them for single sessions and then extend them to the multi-session case by
joint state theorems [13,23,25]. However, in order for our models to be very close to
the actual (real-world) protocols, in this paper, we avoid these theorems: First, they rely
on the setup assumption that the parties participating in a session already agreed upon
a unique session identifier (SID). Real-world protocols do not rely on this assumption.
Second, in joint state realizations, SIDs are explicitly added to messages before encryp-
tion, signing, and MACing, i.e., in a session with SID sid, instead of the actual message,
say m, the message (sid, m) is encrypted, signed, or MACed. While this is a good design
principle, it modifies the actual protocols.

4.1 A Criterion for Universally Composable Key Exchange

We define an ideal functionality for (multi-session) key exchange Fy., formulate a gen-
eral class of key exchange protocols that use Frypio for cryptographic operations, and
present a criterion which allows us to prove that a key exchange protocol in this class
realizes Fie.

The Ideal Key Exchange Functionality. The basic idea of an ideal functionality for
key exchange ¥, see, e.g., [10], is that parties can send requests to . to exchange a
key with other parties and then, in response, receive a session key which is generated
by Fke and guaranteed to be i) the same for every party in the same session and ii) only
known to these parties. As mentioned above and unlike other formulations, our func-
tionality directly allows to handle an unbounded number of sessions between arbitrary
parties.

More precisely, similarly to Ferypeo, our ideal key exchange functionality . is
parametrized by a number n which specifies the number of roles, e.g., n = 2 in case
of a two-party key exchange protocol. To address multiple sessions of a party, the par-
ties identify themselves to Fi. as a user (similarly to Frypio), represented by a tuple
(p, Isid, r), where p is the PID of the party, Isid a local session ID chosen and managed
by the party itself, and the role r € {1,...,n}. For every user a corresponding local
session is managed in Fy., which contains the state of the key exchange for this user.
To initiate a key exchange, a user, say (p, Isid, r), can send a session-start message of
the form (Start, pi,..., p,), with p = p,, to Fy., where the PIDs py,..., p, are the
desired partners of p in the n roles for the key exchange. Upon such a request, Fi.
records this session-start message as a local session for user (p, Isid, r) and informs the
(ideal) adversary about this request by forwarding it to her. The adversary determines
(at some point) to which global session local sessions belong, by sending a session-
create message of the form (Create, (py, Isidy, 1), ..., (pn, Isid,, n)) to Fi., containing

10

one local session for every role. The functionality . only accepts such a message if it
is consistent with the local sessions: The mentioned local sessions all exist, are uncor-
rupted (see below) and are not already part of another global session, and the desired
partners in the local sessions correspond to each other. For a global session, Fy. creates
a fresh key—called the session key—according to some probability distribution. For a
local session (p, Isid, r) which is part of a global session in ., the adversary can send
a session-finish message of the form (Finish, (p, Isid, r)) to ¥y, upon which 7. sends
a session-key-output message of the form (SessionKey, k) to the user (p, Isid, r), which
contains the session key k for this session.

The adversary can corrupt a local session (p, Isid, r) which is not already part of a
global session by sending a corrupt message of the form (Corrupt, (p, Isid, r)) to Fe.
For a corrupted local session, the adversary may determine the session key by sending a
session-finish message of the form (Finish, (p, Isid, r), k) to Fe, upon which ¥y, sends
a session-key-output message of the form (SessionKey, k) to the user (p, Isid, r), which
contains the session key k chosen by the adversary. As usual, the environment can ask
whether a local session is corrupted or not.

Key Exchange Protocols. An Fiypo-key exchange protocol (Ferypio-KE protocol),
which is meant to realize F., is a protocol system ¥ which connects to the I/O in-
terface of Ferypio such that P | Ferypio has the same I/O interface as Fi.. The system P
is of the form P =M, | ... | !M, for some n and machines (II'TMs) My, ..., M,. For
every user (p, Isid, r), there is one instance of M,; intuitively, such an instance is meant
to realize a local session in .. Every instance of M, may arbitrarily communicate with
the adversary (the network) and may use Fcrypio in the name of the corresponding user.!
Analogously to Fi, a user (p, Isid, r) initiates a key exchange by sending a session-start
message to (its instance of) M,. At some point, every instance of M, may return a ses-
sion-key-pointer-output message of the form (SessionKeyPointer, ptr) to its user which
contains a pointer ptr, called the session key pointer, to the actual session key stored in
Ferypto: S0, unlike Fie, only a pointer to the session key, rather than the actual key, is
output (see below for a variant of £ in which, similar to Fy., the actual session key is
given to the user). This instance then provides its user with an interface to Frypio Where
initially only the session key pointer ptr may be used (but subsequently other pointers
can be generated). More precisely, the user (p, Isid, r) may send any request for Ferypro
to M,, such as encryption, decryption, and key derivation requests. Upon such a request,
M, forwards this request to Frypto and waits for receiving an answer from Frypio, Which
is then forwarded to the user (p, Isid, r). However, we require that all pointers in such
a request have been output by M, to this user before and that the session key pointer
is never encrypted or explicitly revealed by a retrieve command (see below for an ex-
ample). Before forwarding requests t0 Ferypio, M, checks whether this requirement is
satisfied; if the check fails, M, returns an error message to the user (p, Isid, r).

For example, after having received (SessionKeyPointer, ptr) from M,, the user
(p, Isid, r) might send the request (New,t) to M, upon which M, will forward it to
Ferypto- Then, Ferypro Will return a new pointer ptr’ to M, which is forwarded by M, to
the user (p, Isid, r). To encrypt a message m which contains the pointer p#r’ (and no other

! We note that an environment of P | Ferypto cannot directly access the 1/0 interface of Frypio, but
only via the ITMs My,..., M,.

11

pointer, say) under the session key pointer ptr, (p, Isid, r) sends the request (Enc, ptr, m)
to M,. Then, M, will forward this message to Ferypio because all pointers in this request,
i.e., ptr and ptr’, have been output to this user before. Finally, the ciphertext returned
by Ferypto 1s forwarded to the user (p, Isid, 7).

We do not fix a special form of corruption but leave the modeling of corruption to
the definition of the protocol #, up to the following conditions: i) the environment can
ask about the corruption status of instances of M, (this corresponds to the environment
asking 7. whether a local session is corrupted), ii) once an instance of M, is corrupted,
it stays corrupted, and iii) an instance of M, cannot be corrupted after it has returned a
session-key-pointer-output message. (See our case study in Section 5 for an example.)

We also consider a variant ? of an F erypto-KE protocol P defined as follows: Instead
of sending session-key-pointer-output messages, P sends session-key-output messages
(as Fxe) which contain the actual key the session key pointer refers to. This key is
obtained using the retrieve command (Retrieve, ptr) of Ferypio. Furthermore, in contrast
to P, P does not provide the environment with an interface t0 Frypro, 1.€., P does not
forward requests t0 Ferypro- We note that the protocol P is meant to realize Fre (see
below). The advantage of # over P is that a session key pointer can still be used for
ideal cryptographic operations, e.g., ideal encryption or even to establish an ideal secure
channel (see below).

We note that in [26] we consider a more general form of Fypio-KE protocols: We
allow P and P to use (arbitrary) ideal functionalities %7 | ... | %7 in addition to Ferypro-
These functionalities can provide additional cryptographic operations, such as public-
key certification. As shown in [26], our criteria and all results obtained in this paper
remain unchanged and carry over to these generalized Fcrypio-KE protocols.

Criterion for Secure Key Exchange Protocols. We now present a sufficient criterion
for an Ferypio-KE protocol to realize Fie, and hence, to provide universally composable
key exchange. The criterion is based on partnering functions.?

A partnering function 7 for an Ferypo-KE protocol # is a polynomial-time com-
putable function that maps a sequence of configurations of | Ferypro t0 a set of tuples
of the form (sy,..., s,), where s, is of the form (p, Isid, r), i.e., s, refers to an instance
of M,, for all » < n. We say that the instances sy, ..., s, form a (global) session ac-
cording to 7. We call T valid for P if for any environment & for P | Ferypio and any run
of E|P | Ferypto the following holds, where T operates on the projection of the runs to
configurations of P | Ferypio: 1) All instances occur in at most one session (according to
7). ii) Instances in one session agree on the PIDs of the desired partners. iii) 7 is mono-
tonic, i.e., once a session has been established according to 7, it continues to exist. Now,
we are ready to state our criterion.

Definition 2. We say that an Ferypio-KE protocol P is strongly Ferypo-secure (with type
to of a key) if there exists a valid partnering function t for P such that for every en-
vironment & for P | Ferypro the following holds with overwhelming probability, where

2 We note that partnering functions have been used in game-based security definitions (e.g., [4]).

However, their use has been criticized in subsequent work (e.g., [3,21]). We emphasize that
here, partnering functions are only part of our criterion but not part of the security definition.

12

the probability is over runs of E|P | Ferypo: For every uncorrupted instance of M,, say
(p, Isid, r), which has output a session key pointer to say the key k in Ferypo it holds that:

i) The local session (p, Isid, r) belongs to some global session (according to T) which

contains only uncorrupted local sessions.

ii) The key k is of type ty and marked unknown in Ferypro.

iit) The key k has never been used in F.ypo as a key for encryption, key derivation, or
to compute a MAC by any user, except through the interface to Ferypio provided to
the environment after a session-key-pointer-output message.

iv) Session key pointers (if any) of other instances point to the same key k if and only
if they belong to the same session as (p, Isid, r) (according to 7).

The following theorem states that this criterion is indeed sufficient for an Ferypio-KE
protocol to realize the ideal key exchange functionality Fye.

Theorem 4. Let P be an Ferypro-KE protocol. If P is strongly Ferypro-secure and P is
used-order respecting and non-committing, then P|Perypio < Fie-

4.2 Applications to Secure Channels

A secure channel, see, e.g., [12], between two parties provides confidentiality and au-
thenticity of the messages sent over the channel and prevents rearrangement and replay
of messages. Some secure channels also prevent message loss. In this section, we only
briefly sketch our results; see [26] for details.

We define two ideal functionalities for secure channels ¥ and ¥, where, unlike
Fser For prevents message loss. Just as F. and in contrast to previous formulations,
our functionalities directly allow to handle an unbounded number of sessions between
arbitrary parties.

We consider two generic realizations of ¥ and ¥, namely P and P, respec-
tively, which use an Frypo-key exchange protocol £ as a sub-protocol. Every session
of Py (analogously for PY.) runs a session of P to exchange a session key. This session
key is then used to establish secure channels between the parties of the session, one
channel for each pair of parties in that session. For this purpose, before a message is en-
crypted (using authenticated encryption) under the session key, the PIDs of the sender
and receiver are added to the plaintexts as well as a counter.

We provide a criterion for F¢ryp0-KE protocols and show that P, and Py, realize
Fs and Ff, respectively, if the underlying Ferypio-KE protocol P satisfies this crite-
rion. While we could use “strongly Fcrypo-secure” as our criterion, a weaker criterion
in fact suffices, which we call @-Fcrypio-secure. Unlike strong Ferypio-security, @-Ferypto-
security allows that session keys are used in the key exchange protocol (e.g., for key
confirmation), i.e., condition iii) in Definition 2 is dropped. But then, messages en-
crypted under these keys in the key exchange protocol should not interfere with mes-
sages sent over the secure channel. Instead of condition iii), we therefore consider a
set @ of messages and require that only messages in « are encrypted under the session
key in the key exchange protocol. We note that strongly Fcrypo-secure protocols are
O-F crypro-secure.

13

The following theorem states that a-Fcrypo-security is a sufficient condition for the
generic secure channels protocols to realize the ideal secure channel functionalities,
provided that plaintexts sent over the secure channel do not belong to . Usually, the
key exchange and the secure channel protocol use different message formats such that
the messages cannot be confused, e.g., because of tagging with different protocol iden-
tifiers. In this case, an appropriate « can easily be defined.

Theorem 5. Let P be an Ferypro-KE protocol and « be a set of messages as above such
that it does not contain any plaintext that is potentially encrypted by Py (or PL). If P
is @-Ferypro-secure, then Py | P | Ferypo < Foe and Pl |P | Ferypro < Fee-

5 Security Analysis of IEEE 802.11i

Using our results and methods developed in the previous sections, we now analyze
two central protocols of WPA2-PSK (IEEE 802.11i) [20], namely the 4-Way Hand-
shake (4WHS) protocol and the CCM Protocol (CCMP), with more details provided
in [26]. We prove that 4WHS provides universally composable key exchange and that
4WHS with CCMP provides universally composable secure channels. Without Ferypio,
our modular approach, and our criteria, the proof would be considerably more com-
plex and would involve non-trivial reduction proofs. In particular, due to Ferypio, OUr
proofs only require syntactic arguments and they illustrate that F¢ypio can be used in an
intuitive and easy way for the analysis of real-world security protocols.

5.1 The 4-Way Handshake Protocol

Description of the 4WHS Protocol. The 4-Way Handshake (4WHS) protocol consists
of two roles, an authenticator A, e.g., an access point, and a supplicant S, e.g., a lap-
top, which share a Pairwise Master Key (PMK). The authenticator may communicate
with several supplicants using the same PMK, which in WPA2-PSK is a pre-shared key
(PSK). On an abstract level, the message exchange between an authenticator A and a
supplicant S is shown in Figure 1, where p4 and pg are the names (Media Access Con-
trol (MAC) addresses) of A and S, respectively, n4 and ng are nonces generated by A and
S, respectively, and c, ..., c4 are pairwise distinct constants used to indicate different
messages. From the PMK, A and S derive a Pairwise Transient Key PTK by computing
PTK = F(PMK, “Pairwise key expansion” || min(pa, ps) || max(pa, ps) || min(ny, ng)
|| max(ny, ng))), where F is an HMAC, which according to the IEEE 802.11i standard
is assumed to be pseudo-random. The PTK is then split into the Key Confirmation Key
(KCK), the Key Encryption Key (KEK), and the Temporary Key (TK), where TK is
used in CCMP to establish a secure channel between A and S (see below).

Modeling the 4WHS Protocol. Modeling the 4WHS protocol as an Frypio-KE proto-
col is straightforward. We emphasize that, since Ferypio provides a low-level interface
to basic cryptographic primitives with a very liberal use of tagging, our modeling of
the 4WHS protocol, including message formats, the use of cryptographic primitives,
and cryptographic assumptions, is quite close to the actual standard. We note that in

14

1.A = S: pa,ng, ¢

2.8 - A: Ps,ns, Cz,MACKCK(ns, Cz)
3. A = S: pa,ng, c3, MACkck (14, €3)
4. S — A: ps,cq, MACkck(cq)

Fig. 1. The 4-Way Handshake Protocol of IEEE 802.11i.

our modeling of 4WHS parties may not play both the role of an authenticator and a
supplicant with the same pre-shared key. Otherwise, 4WHS would be insecure. Indeed,
a reflection attack would be possible [17], and our security proofs would fail.

The adversary can (statically) corrupt an instance of A or S, i.e., a local session, by
sending a special corrupt message to it. This has to be the first message this instance
receives from the adversary. A corrupted instance grants the adversary full control over
its interface, including the interface it has to Ferypio- If the instance is corrupted, all keys
it has should be corrupted as well. We therefore require that the adversary corrupts all
keys a corrupted instance creates using Ferypio- A corrupted instance always checks (by
asking Ferypio) if its keys created in Frypio indeed have been corrupted by the adversary
and terminates if they have not been corrupted. Note that since keys in Ferypo of a
corrupted instance are known, it is not a problem if the adversary generates key cycles or
causes the commit problem with those keys. Conversely, uncorrupted instances always
check that the key, PSK, and the nonce, ny or ng, they have created using Ferypo are
uncorrupted at the time of their creation.

In the literature, (static) corruption is often modeled on a per party basis, i.e., if a
party is corrupted, then all its keys are corrupted and the adversary is in full control of
that party. We note that this is a special case of our modeling of corruption because the
adversary can decide to corrupt all keys and local sessions of a corrupted party.

Security Analysis. We first show that 4WHS is strongly Fcrypio-secure.
Theorem 6. The protocol AWHS is strongly Frypio-secure with type authenc-key.

Proof. First, we define a partnering function 7 for 4WHS: Two instances are defined to
form a session if a) they have different roles, namely A and S, respectively, b) they are
both uncorrupted, c) the party names of the desired partner correspond to each other, d)
they use the same pre-shared key, e) the values of the nonces correspond to each other,
and f) one of them has already output a session key pointer. Because Ferypo guarantees
that (uncorrupted) nonces are unique for every instance, there are at most two such
instances, and hence, it is easy to see that 7 is a valid partnering function for 4WHS.

It remains to show that 4WHS is strongly Fcrypo-secure w.r.t. 7 and every environ-
ment & of 4WHS | Ferypro: Let p be a run of E|4WHS | Ferypio and let (p, Isid, r) be some
uncorrupted instance (i.e., an instance of M,) in p which has output a session key pointer
to a key, say k, in Ferypo, and which established the pre-shared key PSK and derived
KCK and TK from it in Ferypro-

First, we observe that, by our corruption model, since (p, Isid, r) is uncorrupted,
PSK is uncorrupted (in Ferypio). Also, every other instance that established PSK must
be uncorrupted as well since keys created by corrupted instances are required to be
corrupted. In uncorrupted instances, PSK is only used to derive keys, hence, PSK is

15

always marked unknown in Fypo. In particular, no corrupted local session has a pointer
to PSK. Now, by definition of Fcryp0, KCK and TK can only be derived by instances
that have a pointer to PSK, leaving only uncorrupted instances. Moreover, again by
Ferypto» these uncorrupted instances have to use the same seed s as (p, Isid, r), which
contains the party names, p and p’ say, and two nonces. Since uncorrupted nonces
generated by Ferypo are guaranteed to be unique, by the construction of s, it follows
that besides (p, Isid, r) at most one other (uncorrupted) instance (p’, Isid’, r’), for some
p’, Isid’, and r’, uses s, and hence, has a pointer to KCK and TK by derivation. By the
definition of the protocol, uncorrupted instances only use KCK for MACing and TK is
at most used after being output in a session-key-pointer-output message, but then TK
may not be encrypted or retrieved. By definition of Frypio, it follows that KCK and TK
are always marked unknown in Frypo and only (p, Isid, r) and, if present, (p’, Isid’, ")
have pointers to KCK and TK.

We now show that (p’, Isid’, r’) exists and that (p, Isid, r) and (p’, Isid’, r’) belong to
the same session (according to 7), which implies i) of Definition 2: We assume that
r = A; the proof for r = § is similar. The instance (p, lsid, r) verified a MAC in
a message of the form p’,n”, c;, MACkck(n”, cz). Since r = A and the constants c;
and c3 are distinct, (p, Isid, r) has not created such a MAC. By definition of Ferypios
MACkck(n”, ¢) can only have been created by some instance that has a pointer to
KCK, which must be the (uncorrupted) instance (p’, Isid’, ') from above. It follows
that = § since an uncorrupted instance with » = A would not create a MAC of
such a form. By our assumption that a party does not play both the role of A and §
with the same pre-shared key, it follows that p” # p. (Our assumption, and the implied
fact, p’ # p, is crucial; without it the proof would fail and in fact a reflection attack
would be possible [17].) We can now show that (p, Isid, r) and (p’, Isid’, r’) belong to
the same session according to 7: We already know that conditions a), b), d), and f) for
7 (as defined above) are satisfied. Since p # p’, it follows that the intended partner of
(p',Isid’, ") is p, since, by definition of Frypo and KCK, otherwise (p’, Isid’, r’) could
not have derived KCK. So c) is satisfied. (Without our assumption mentioned above,
this could not be concluded.) Similarly, condition e) is satisfied since otherwise the two
instances would not have derived the same KCK.

We already know that TK (= k) is marked unknown in F¢ryp0. This key is of type
authenc-key because, by definition of the protocol, it has been derived as a key of this
type. So ii) of Definition 2 follows.

We also know that only (p, Isid, r) and (p’, Isid’, r") have a pointer to TK in F erypto-
Hence, iv) of Definition 2 follows. Since both instances are uncorrupted, by the defini-
tion of the protocol, iii) follows as well. O

Trivially, 4WHS (recall that AWHS outputs the session key instead of a pointer to
it) is a standard protocol (as defined in Section 3), hence, it is used-order respecting and
non-committing. Using Theorem 4 and 6, we immediately obtain that 4WHS | Perypto 18
a universally composable secure key exchange protocol.

Corollary 2. 4WHS [Perypto < Free-

16

5.2 The CCM Protocol

WPA2-PSK uses CCMP with the Temporal Key (TK), exchanged by running the 4WHS
protocol, to establish a secure channel between the authenticator and the supplicant.
CCMP can be modeled faithfully by Ps. (see Section 4.2). By Theorem 5 and 6 we
obtain that CCMP using 4WHS and Fcrypio is a universally composable secure chan-
nel protocol. Moreover, it is easy to see that CCMP |4WHS is a standard protocol (as
defined in Section 3), and hence, it is used-order respecting and non-committing. By
Corollary 1, we then obtain:

Corollary 3. CCMP|4WHS | Ferypio < Fec and CCMP | 4WHS | Perypio < Fc-

6 Related Work

Backes et al. (see, e.g., [2]) proposed a Dolev-Yao style cryptographic library. The
main purpose of the library is to provide a Dolev-Yao style abstraction to the user,
in the spirit of computational soundness results [27, 15, 1, 24]. In contrast, our function-
ality provides a much lower-level idealization, aiming at wide applicability and faithful
treatment of cryptographic primitives. More specifically, unlike Frypwo, based on the
Dolev-Yao library only those protocols can be analyzed which merely use operations
provided by the library (since the user, except for payload data, only gets his/her hands
on pointers to Dolev-Yao terms in the library, rather than on the actual bit strings, in-
ternally everything is represented as terms too) and these protocols can only be shown
to be secure w.r.t. non-standard encryption schemes (since, e.g., extra randomness and
tagging with key identifiers is assumed for encryption schemes) and assuming specific
message formats (all types of messages—nonces, ciphertexts, pairs of messages etc.—,
are tagged in the realization). While the Dolev-Yao library considers symmetric encryp-
tion (key derivation is not considered at all) [2], it is an open problem whether there is
a reasonable realization; the original proof of the realization of the crypto library in [2]
is flawed, as examples presented in [14] illustrate (see also [25]).

Our criteria for secure key exchange and secure channel protocols presented in Sec-
tion 4 are related to the concept of secretive protocols proposed by Roy et al. [31] (see
also [25]). However, unlike our criteria, which can be checked based on information-
theoretic/syntactical arguments, checking whether a protocol is secretive requires in-
volved cryptographic reduction proofs. Also, Roy et al. do not prove implications for
composable security and they do not consider secure channels.

The only work we are aware of that attempts to perform a cryptographic analysis of
the 4-Way Handshake protocol of IEEE 802.11i is [33]; secure channels are not consid-
ered. However, this work is quite preliminary: The security assumptions and theorems
are not formulated precisely and no security proofs or proof sketches are available. In
He et al. [18], the first symbolic analysis of IEEE 802.11i has been presented, based
on their Protocol Composition Logic (PCL). There are only a few other papers on the
analysis of real-world protocols that involve key derivation: The Internet Key-Exchange
(IKE) protocol (which is part of IPsec) was analyzed in [11]. (Fragments of) TLS were
analyzed in [16, 28, 5], assuming session identifiers in ciphertexts [16] or the random or-
acle for key derivation [28, 5]. Cryptographic analysis of Kerberos was carried out for

17

example in [7], where key derivation is modeled by pseudo-random functions within
CryptoVerif. However, this analysis considers more abstract message formats and does
not yield composable security guarantees.

References

1.

10.

11.

15.

16.

17.

18.

M. Backes, M. Diirmuth, and R. Kiisters. On Simulatability Soundness and Mapping Sound-
ness of Symbolic Cryptography. In FSTTCS 2007, volume 4855 of LNCS, pages 108-120.
Springer, 2007.

. M. Backes and B. Pfitzmann. Symmetric Encryption in a Simulatable Dolev-Yao Style Cryp-

tographic Library. In CSFW-17 2004, pages 204-218. IEEE Computer Society, 2004.

. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure against

Dictionary Attacks. In EUROCRYPT 2000, volume 1807 of LNCS, pages 139-155. Springer,
2000.

. M. Bellare and P. Rogaway. Provably Secure Session Key Distribution: The Three Party

Case. In STOC 1995, pages 57-66. ACM, 1995.

. K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu. Cryptographically Verified Imple-

mentations for TLS. In CCS 2008, pages 459—468. ACM, 2008.

. J. Black, P. Rogaway, and T. Shrimpton. Encryption-Scheme Security in the Presence of

Key-Dependent Messages. In SAC 2002, volume 2595 of LNCS, pages 62—75. Springer,
2002.

. B. Blanchet, A. D. Jaggard, A. Scedrov, and J.-K. Tsay. Computationally Sound Mechanized

Proofs for Basic and Public-key Kerberos. In ASIACCS 2008, pages 8§7-99. ACM, 2008.

. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.

In FOCS 2001, pages 136-145. IEEE Computer Society, 2001.

. R. Canetti. Universally Composable Signature, Certification, and Authentication. In CSFW-

17 2004, pages 219-233. IEEE Computer Society, 2004.

R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.
Technical Report 2000/067, Cryptology ePrint Archive, December 2005. http://eprint.
iacr.org/2000/067/.

R. Canetti and H. Krawczyk. Security Analysis of IKE’s Signature-Based Key-Exchange
Protocol. In CRYPTO 2002, volume 2442 of LNCS, pages 143—161. Springer, 2002.

. R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange and Secure

Channels. In EUROCRYPT 2002, volume 2332 of LNCS, pages 337-351. Springer, 2002.

. R. Canetti and T. Rabin. Universal Composition with Joint State. In CRYPTO 2003, volume

2729 of LNCS, pages 265-281. Springer, 2003.

. H. Comon-Lundh and V. Cortier. Computational soundness of observational equivalence.

Technical Report INRIA Research Report RR-6508, INRIA, 2008. Available from http:
//www.loria. fr/~cortier/Papiers/CCS08-report.pdf.

V. Cortier, S. Kremer, R. Kiisters, and B. Warinschi. Computationally Sound Symbolic
Secrecy in the Presence of Hash Functions. In FSTTCS 2006, volume 4337 of LNCS, pages
176-187. Springer, 2006.

S. Gajek, M. Manulis, O. Pereira, A. Sadeghi, and J. Schwenk. Universally Composable
Security Analysis of TLS. In ProvSec 2008, volume 5324 of LNCS, pages 313-327. Springer,
2008.

C. He and J. C. Mitchell. Security Analysis and Improvements for IEEE 802.11i. In
NDSS 2005. The Internet Society, 2005.

C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell. A Modular Correctness
Proof of IEEE 802.11i and TLS. In CCS 2005, pages 2—15. ACM, 2005.

18

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

D. Hofheinz, D. Unruh, and J. Miiller-Quade. Polynomial Runtime and Composability.
Technical Report 2009/023, Cryptology ePrint Archive, 2009. http://eprint.iacr.org/
2009/023/.

IEEE Standard 802.11-2007. Wireless LAN Medium Access Control (MAC) and Physi-
cal Layer (PHY) Specifications, Part 11 of IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and metropolitan
area networks — Specific requirements, June 2007.

K. Kobara, S. Shin, and M. Strefler. Partnership in key exchange protocols. In ASIA-
CCS 2009, pages 161-170. ACM, 2009.

R. Kiisters. Simulation-Based Security with Inexhaustible Interactive Turing Machines. In
CSFW-19 2006, pages 309-320. IEEE Computer Society, 2006.

R. Kiisters and M. Tuengerthal. Joint State Theorems for Public-Key Encryption and Digitial
Signature Functionalities with Local Computation. In CSF 2008, pages 270-284. IEEE
Computer Society, 2008.

R. Kiisters and M. Tuengerthal. Computational Soundness for Key Exchange Protocols with
Symmetric Encryption. In CCS 2009, pages 91-100. ACM Press, 2009.

R. Kiisters and M. Tuengerthal. Universally Composable Symmetric Encryption. In
CSF 2009, pages 293-307. IEEE Computer Society, 2009.

R. Kiisters and M. Tuengerthal. Ideal Key Derivation and Encryption in Simulation-based
Security. Technical Report 2010/295, Cryptology ePrint Archive, 2010. http://eprint.
iacr.org/2010/295/.

D. Micciancio and B. Warinschi. Soundness of Formal Encryption in the Presence of Active
Adversaries. In TCC 2004, volume 2951 of LNCS, pages 133—151. Springer, 2004.

P. Morrissey, N. P. Smart, and B. Warinschi. A Modular Security Analysis of the TLS Hand-
shake Protocol. In ASIACRYPT 2008, volume 5350 of LNCS, pages 55-73. Springer, 2008.

T. Ohigashi and M. Morii. A Practical Message Falsification Attack on WPA. In JWIS 2009,
20009.

B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems and its Ap-
plication to Secure Message Transmission. In S&P 2001, pages 184-201. IEEE Computer
Society, 2001.

A. Roy, A. Datta, A. Derek, and J. C. Mitchell. Inductive Proofs of Computational Secrecy.
In ESORICS 2007, volume 4734 of LNCS, pages 219-234. Springer, 2007.

E. Tews and M. Beck. Practical Attacks against WEP and WPA. In WISEC 2009, pages
79-86. ACM, 2009.

F. Zhang, J. Ma, and S. Moon. The Security Proof of a 4-Way Handshake Protocol in
IEEE 802.11i. In CIS 2005, volume 3802 of LNCS, pages 488—493. Springer, 2005.

19

