
Ordinos: A Verifiable Tally-Hiding Remote
E-Voting System

Ralf Küsters1, Julian Liedtke1, Johannes Müller2, Daniel Rausch1, and
Andreas Vogt3

1 University of Stuttgart, firstname.secondname@sec.uni-stuttgart.de
2 University of Luxembourg, firstname.secondname@uni.lu

3 FHNW Switzerland, firstname.secondname@fhnw.ch

Abstract. Modern electronic voting systems (e-voting systems) are de-
signed to provide not only vote privacy but also (end-to-end) verifiability.
Several verifiable e-voting systems have been proposed in the literature,
with Helios being one of the most prominent ones.

Almost all such systems, however, reveal the full tally, consisting of
the exact number of votes per candidate or even all single votes. There
are several situations where this is undesirable. For example, in elections
with only a few voters (e.g., boardroom or jury votings), revealing the
complete result leads to a low privacy level, possibly deterring voters from
voting for their actual preference. In other cases, revealing the complete
result might unnecessarily embarrass some candidates. Instead, merely
revealing the winner or a ranking of candidates is often sufficient. This
property is called tally-hiding, and it offers completely new options for
e-voting. Hiding the full tally while still providing verifiability poses a
difficult challenge that has not been solved in a provably secure way yet.

In this paper, we propose the first provably secure end-to-end verifiable
tally-hiding e-voting system, called Ordinos. We have implemented our
system and evaluated its performance. Our work, moreover, provides
a deeper understanding of tally-hiding in general, in particular in how
far tally-hiding affects the levels of privacy and verifiability of e-voting
systems.

1 Introduction

E-voting systems are widely used both for national, state-wide, and municipal
elections all over the world with several hundred million voters so far. Beyond
such high-stake elections, e-voting is also becoming very common for elections
within companies (e.g., McDonald’s Franchises [1]), associations (e.g., IACR [2],
German Computer Society [49]), political parties (e.g., various Pirate Parties),
non-profit organizations (e.g., Debian [3]), and religious institutions (e.g., Protes-
tant Churches [4]). In order to meet this increasing demand for e-voting solutions,
many IT companies offer their services [5], including, for example, Microsoft [6].

There are roughly two types of e-voting systems: those where the voter has
to go to a polling station in order to cast her vote using a voting machine, and

those that allow the voter to cast her vote remotely over the Internet (remote
e-voting), using her own device.

Since e-voting systems are complex software and hardware systems, program-
ming errors are unavoidable and deliberate manipulation of such systems is often
hard or virtually impossible to detect. Hence, there is a high risk that votes are
not counted correctly and that the published election result does not reflect how
voters actually voted (see, e.g., [32, 54,56]).

Therefore, there has been intensive and ongoing research to design e-voting
systems which provide what is called (end-to-end) verifiability (see, e.g., [7, 11,
20–22,37,40,41]), where voters and external observers are able to check whether
votes were actually counted and whether the published election result is cor-
rect, even if voting devices and servers have programming errors or are outright
malicious. Several of such systems have already been deployed in real binding
elections (see, e.g., [7, 8, 16, 20, 28, 33]), with Helios [7] being one of the most
prominent (remote) e-voting systems. In Switzerland and Norway, for example,
e-voting systems for national and local elections and referendums are even re-
quired to provide verifiability [31,35].

Tally-hiding e-voting. In the real world, there are numerous voting methods
that differ in the form of the final result and the rules to determine it. For exam-
ple, one of the most widely used ones is plurality voting in which the candidate
with the largest number of votes is elected. For some elections, a more refined
version of plurality voting with two rounds is used: if a candidate receives the
absolute majority of votes in the first round, she wins; otherwise, there is a runoff
between the two best candidates of the first round. In both cases, the final re-
sult of the voting method merely consists of the winner. Another popular voting
method is to allocate the k seats of an electoral body to the k candidates with
the largest number of votes. In this case, the final result of the voting method
merely consists of the set of elected candidates.

Given this variety of voting methods, how do existing (electronic or paper-
based) voting protocols realize a given voting method? Essentially all of them
first reveal the full tally (e.g., the number of votes per candidate/party or even
all single votes), and only then calculate the actual election result (e.g., the
winner). For traditional paper-based voting, it seems practically infeasible to
follow a different approach without having to sacrifice verifiability. Fortunately,
as demonstrated in this paper, electronic voting can offer completely new options
for elections in that beyond the necessary final result no further information
is revealed to any party. Strictly realizing the given voting method (without
revealing any unnecessary information) provides several advantages, for example,
in the following situations:

(i) As mentioned above, some elections have several rounds. In particular,
they might involve runoff elections. In order to get unbiased voters’ opinions,
one might not want to reveal intermediate election results, except for the in-
formation which candidates move on to the runoff elections. For example, if no
candidate received the absolute majority, one might want to reveal only the two

best candidates (without their vote counts), who then move on to the runoff
election.

(ii) Elections are often carried out among a small set of voters (e.g., in
boardroom or jury votings). Even in an ideal voting system, revealing the full
tally leads to a low level of privacy because a single voter’s vote is “hidden”
behind only a low number of other votes. Therefore, in such an election, a voter
might not vote for her actual preference knowing that it does not really remain
private.

(iii) In some elections, for example, within companies, student associations,
or in boardroom elections, it might be unnecessarily embarrassing for the losing
candidates to publish the (possibly low) number of votes they received. This has,
for example, been practiced in elections within the German Computer Society.

These examples illustrate that, for some situations, it is desirable to not
publish the full tally as part of the tallying procedure but to only publish the
pure election result, e.g., only the winner of an election with or without the
number of votes he/she received, only the set of the first k candidates, which
might be up for a runoff election, only the set of the last k candidates, which
might be excluded from a runoff election, or only a ranking of candidates, without
the number of votes they received.

Following [55], we call e-voting systems that hide part of the tally tally-hiding.
So, while tally-hiding e-voting is desirable in many situations, as to the best of
our knowledge, only four tally-hiding e-voting systems have been proposed in the
literature to date: a quite old one by Benaloh [12], one by Hevia and Kiwi [36],
and two more recent ones by Szepieniec and Prenell [55] and by Canard et
al. [17]. As further discussed in Section 9, among other shortcomings, none of
these systems come with a rigorous cryptographic security proof and only one
of these systems has been implemented.

One could also try to employ a generic secure MPC protocol for tally-hiding
voting (e.g., [10, 30]). However, to the best of our knowledge, there is no mali-
ciously secure MPC protocol in the literature that immediately fits what is also
required for remote e-voting: client-server model (voters should not immediately
be involved in tallying the result), public identification of misbehaving parties
(i.e., accountability; sometimes called identifiable abort in the context of secure
MPC), a suitable threshold structure, and importantly, efficiency and practi-
cability. For example, the protocol by Baum et al. [10] assumes bidirectional
channels between the input parties (voters) and the computing parties (talliers)
which does not directly fit to what is required for remote e-voting.

Hence, in this largely unexplored field, it remains an open problem to develop
and implement a provably secure end-to-end verifiable tally-hiding e-voting sys-
tem for (remote) elections that achieves all of these requirements. Solving this
open problem is the main goal of this paper. Furthermore, we provide a deeper
understanding of tally-hiding voting in general, in particular how hiding the tally
affects verifiability and privacy properties.

By making e-voting systems not only tally-hiding but also verifiable, the
feature of tally-hiding will become more attractive in the future: as mentioned

above, in classical paper-based elections hiding part of the tally from everybody
(including voting authorities) seems infeasible. Making elections also verifiable
establishes trust in the result even if only a partial result (winner, ranking, etc.) is
published as manipulation can be detected. Altogether, verifiable tally-hiding e-
voting systems open up completely new kinds of elections that were not possible
before.

Our Contribution. We present Ordinos, the first provably secure tally-hiding
remote e-voting system. As such, Ordinos is an important step for further research
in the largely unexplored field of tally-hiding e-voting.

Conceptually, Ordinos follows the general structure of the Helios remote e-
voting system, at least in its first phase, but strictly extends Helios’ functionality:
Helios always reveals the full tally. In contrast, Ordinos supports several tally-
hiding result functions, including revealing only the winner of an election, the k
best/worst candidates (with or without ranking), or the overall ranking, option-
ally with or without disclosing the number of votes for some or all candidates. We
note that, compared to Helios, Ordinos uses different (instantiations of) crypto-
graphic primitives and also additional primitives, in particular, a suitable MPC
component, in order to obtain a tally-hiding system.

We carry out a detailed cryptographic analysis proving that Ordinos provides
privacy and verifiability: We show that Ordinos preserves the same level of ver-
ifiability as Helios, independently of the tally-hiding result function considered.
More generally, this result demonstrates that the common definition for verifia-
bility is independent of the specific result functions considered. Conversely, with
result functions that hide most of the full tally, the level of privacy Ordinos pro-
vides can be much better than Helios. To study privacy for tally-hiding voting
more generally, we derive privacy results for an ideal tally-hiding voting protocol
for various result functions in order to compare the privacy levels. We then show
that the privacy of Ordinos can be reduced to the ideal protocol. These gen-
eral results about properties of tally-hiding voting systems are of independent
interest.

Our cryptographic analysis of Ordinos is based on generic properties of the
employed cryptographic primitives, and hence, is quite general and does not
rely on specific instantiations. In order to obtain a workable system, we carefully
crafted one instantiation using, among others, Paillier encryption [51], an MPC
protocol for greater-than by Lipmaa and Toft [50], as well as NIZKPs by Schoen-
makers and Veeningen [53]. We implemented Ordinos based on this instantiation
and evaluated its performance, demonstrating its practicability.

Structure of the Paper. In the following section, we describe Ordinos. We
then, in Section 3, present the model that is the basis of our cryptographic
analysis. End-to-end verifiability is studied in Section 4, followed by privacy
in Section 5. In Section 6, we investigate the level of privacy provided by tally-
hiding e-voting systems in general depending on the tally-hiding result functions.
The instantiation of Ordinos by concrete cryptographic primitives is described
in Section 7, with the implementation and performance analysis presented in
Section 8. Related work is discussed in Section 9. We conclude in Section 10.

Further details, including all formal proofs, are provided in the appendix; the
implementation and detailed benchmarks are available upon request.

2 Description of Ordinos

In this section, we present the Ordinos voting protocol on the conceptual level. We
start with the cryptographic primitives that we use. Instead of relying on specific
primitives, the security of Ordinos can be guaranteed under certain assumptions
these primitives have to satisfy. In particular, they can later be instantiated with
the most appropriate primitives available.

As already mentioned, Ordinos extends the prominent Helios e-voting pro-
tocol. While in Helios the complete election result is published (the number of
votes per candidate/choice), Ordinos supports tally-hiding elections. More specif-
ically, the generic version of Ordinos, which we prove secure, supports arbitrary
(tally-hiding) result functions evaluated over the aggregated votes per candidate.
Our concrete instantiation (see Section 7) then realizes many such practically
relevant functions.

In a nutshell, Ordinos works as follows: Voters encrypt their votes and send
their ciphertexts to a bulletin board. The ciphertexts are homomorphically ag-
gregated to obtain ciphertexts that encrypt the number of votes per candidate.
Then, by an MPC protocol, trustees evaluate the desired result function on these
ciphertexts and publish the election result.

Cryptographic primitives. For Ordinos, we use the following cryptographic
primitives: A homomorphic, IND-CPA-secure (t, ntrustees)-threshold public-key
encryption scheme E=(KeyShareGen,PublicKeyGen,Enc,DecShare,Dec), e.g., ex-
ponential ElGamal or Paillier. A non-interactive zero-knowledge proof (NIZKP)
πEnc for proving knowledge and correctness of a plaintext vector given a ci-
phertext vector, a public key, and a predicate which specifies valid choices (see
below); a NIZKP πKeyShareGen for proving knowledge and correctness of a private
key share given a public key share. A multi-party computation (MPC) protocol
PMPC that takes as input a ciphertext vector of encrypted integers (encrypted
using E from above) and securely evaluates a given function ftally over the plain
integers and outputs the result on a bulletin board. For example, a function ftally
that outputs the index(s) of the ciphertext(s) with the highest integer would be
used to determine and publish the winner of an election. The exact security
properties PMPC has to satisfy to achieve privacy and verifiability for the overall
system, Ordinos, are made precise in the following sections. Finally, we use an
EUF-CMA-secure signature scheme S.

Protocol participants. The Ordinos protocol is run among the following par-
ticipants: a voting authority Auth, (human) voters V1, . . . ,Vnvoters , voter support-
ing devices VSD1, . . . ,VSDnvoters , voter verification devices VVD1, . . . ,VVDnvoters ,
trustees T1, . . . ,Tntrustees , an authentication server AS, and an append-only bul-
letin board B.

As further described below, the role of each (untrusted) voter supporting
device VSD is to generate and submit the voter’s ballot, whereas the (trusted)

voter verification device VVD checks that the VSD behaved correctly. The role
of the trustees is to tally the voters’ ballots. In order to avoid that a single
trustee knows how each single voter voted, the secret tallying key is distributed
among all of them so that t out of ntrustees trustees need to collaborate to tally
the ballots.

We assume the existence of the following authenticated channels:4 First, an
authenticated channel from each voter supporting device VSDi to the authen-
tication server AS. These channels allow AS to ensure that only eligible voters
are able to cast their ballots. Second, an authenticated channel from each voter
VSDi to the bulletin board B. The voter can use the channel in order to post
information on the bulletin board B, for example, a complaint in case her ballot
is not published by AS (see below).

Protocol overview. A protocol run consists of the following phases: In the
setup phase, parameters and key shares are fixed/generated, and the public key
shares are published. In the voting phase, voters pick their choices, encrypt them,
and then either audit or submit their ballots. Now or later, in the voter verifica-
tion phase, voters verify that their ballots have been published by the authen-
tication server. In the tallying phase, the trustees homomorphically aggregate
the ballots, run PMPC in order to secretly compute, and publish the election
result according to the tally-hiding result function ftally so that not even the
trustees learn anything beyond the final tally-hiding result. Finally, in the public
verification phase, everyone can verify that the trustees tallied correctly.

We now explain each phase in more detail.

Setup phase. In this phase, all election parameters are fixed and posted on
the bulletin board by the voting authority Auth: the list id of eligible voters,
opening and closing times, the election ID idelection, etc. as well as the set C ⊆
{0, . . . , nvpc}noption of valid choices where noption denotes the number of options/
candidates, nvpc the number of allowed votes per option/candidate, and abstain
models that a voter abstains from voting. For example, if each voter can vote
for at most one candidate, then nvpc = 1 and every vector in C contains at most
one 1-entry.

The authentication server AS and each trustee Tk run the key generation
algorithm of the digital signature scheme S to generate their public/private
(verification/signing) keys. The verification keys are published on the bulletin
board B. In what follows, we implicitly assume that whenever the authentication
server AS or a trustee Tk publish information, they sign this data with their
signing keys.

Every trustee Tk runs the key share generation algorithm of the public-key
encryption scheme E to generate its public/private (encryption/decryption) key

share pair (pkk, skk). Additionally, each trustee Tk creates a NIZKP πKeyShareGen
k

to prove knowledge of skk and validity of (pkk, skk). Each trustee Tk then posts

4 By assuming such authenticated channels, we abstract away from the exact method
the voters use to authenticate; in practice, several methods can be used, such as
one-time codes, passwords, or external authentication services.

(pkk, π
KeyShareGen
k) on the bulletin board B. With PublicKeyGen, everyone can then

compute the (overall) public key pk.

Voting phase. In this phase, every voter Vi can decide to abstain from voting
or to vote for some choice ch ∈ C ⊆ {0, . . . , nvpc}noption . In the latter case, the voter
inputs ch to her voter supporting device VSDi which proceeds as follows. First,
VSDi encrypts each entry of ch separately under the public key pk and obtains
a ciphertext vector ci. That is, the j-th ciphertext in ci encrypts the number
of votes assigned by voter Vi to candidate/option j. After that, in addition to
ci, VSDi creates a NIZKP πEnc

i in order to prove that it knows which choice ch
the vector ci encrypts and that ch ∈ C. Finally, VSDi sends a message to Vi to
indicate that a ballot bi = (id, ci, πEnc

i) is ready for submission, where id ∈ id
is the voter’s identifier. Upon receiving this message, the voter Vi can decide
to either audit or submit the ballot bi (Benaloh challenge [13]), as described in
what follows.

If Vi wants to audit bi, Vi inputs an audit command to VSDi who is supposed
to reveal all the random coins that it had used to encrypt Vi’s choice and to
generate the NIZKPs. After that, Vi forwards this data and her choice ch to
her verification device VVDi which is supposed to check the correctness of the
ballot, i.e., whether the candidate ch chosen by Vi and the revealed randomness
by VSDi yield bi. Audited ballots cannot be cast. The voter is therefore asked
to vote again.

If Vi wants to submit bi, Vi inputs a cast command to VSDi who is supposed
to send bi to the authentication server AS on an authenticated channel. If AS
receives a ballot in the correct format (i.e., id ∈ id and id belongs to Vi, and bi is
tagged with the correct election ID idelection) and the NIZKP πEnc

i is valid, then
AS responds with an acknowledgement consisting of a signature on the ballot bi;
otherwise, it does not output anything.5 After that, VSDi forwards the ballot
bi as well as the acknowledgement to VVDi for verification purposes later on.
If the voter tried to re-vote and AS already sent out an acknowledgement, then
AS returns the old acknowledgement only and does not accept the new vote. If
VVDi does not receive a correct acknowledgement from AS via VSDi, it outputs
a message to Vi who then tries to re-vote, and, if this does not succeed, files a
complaint on the bulletin board using the authenticated channel.6

When the voting phase is over, AS creates the list of valid ballots b that
have been submitted. Then AS removes all ballots from b that are duplicates

5 Just as for Helios, variants of the protocol are conceivable where the voter’s ID is
not part of the ballot and not put on the bulletin board or at least not next to her
ballot (see, e.g., [47]).

6 If such a complaint is posted, it is in general impossible to resolve the dispute and
decide who is to be blamed: (i) AS who might not have replied as expected (but
claims, for instance, that the ballot was not cast), or (ii) VSDi who might not have
submitted a ballot or forwarded the (correct) acknowledgement to VVDi, or (iii) the
voter who might not have cast a ballot but nevertheless claims that she has. Note
that this is a very general problem which applies to virtually any remote voting
protocol. In practice, the voter could ask the voting authority Auth to resolve the
problem.

w.r.t. the pair (c, πEnc) only keeping the first one in order to protect against
replay attacks, which jeopardize vote privacy [25]. Afterwards, AS signs b and
publishes it on the bulletin board.

Voter verification phase. After the list of ballots b has been published, each
voter Vi can check whether (i) her ballot bi appears in b in the case she voted (if
not, Vi can publish the acknowledgement she received from AS on the bulletin
board which serves as binding evidence that AS misbehaved), or (ii) none of
the ballots in b contain her id in the case she abstained. In the latter case, the
dispute cannot be resolved without further means: Did Vi vote but claims that
she did not or did Vi not vote but AS used her id dishonestly?7

In both cases, however, it is well-known that, realistically, not all voters are
motivated enough to perform these verification procedures, and even if they are,
they often fail to do so (see, e.g., [38]). In our security analysis of Ordinos, we
therefore assume that voters perform the verification procedures with a certain
probability. In order to increase verification rates, fully automated verification,
as deployed in the sElect voting system [44] turned out to be helpful and could
be implemented in Ordinos as well.

Tallying phase. The list of ballots b posted by AS is the input to the tallying
phase, which works as follows.

1. Homomorphic aggregation. Each trustee Tk reads b from the bulletin board
B and verifies its correctness (as described in the voting phase above). If this
check fails, Tk aborts since AS should guarantee this. Otherwise, Tk homomor-
phically aggregates all vectors ci in b entrywise and obtains a ciphertext vector
cunsorted with noption entries each of which encrypts the number of votes of the
respective candidate/option.

2. Secure function evaluation. The trustees T1, . . . ,Tntrustees run the MPC pro-
tocol PMPC with input cunsorted to securely evaluate the result function ftally. They
then output the election result according to ftally, together with a NIZKP of cor-
rect evaluation πMPC.8

Public verification phase. In this phase, every participant, including the
voters or external observers, can verify the correctness of the tallying procedure,
in particular, the correctness of all NIZKPs.

Instantiation and implementation. As already mentioned, in Section 7 we
show how to efficiently instantiate Ordinos with concrete primitives. In partic-
ular, we provide an efficient realization of a relevant class of tally-hiding result
functions, e.g., for publishing only the winner of an election or certain subsets or
rankings of candidates. In Section 8, we describe our implementation and provide
benchmarks. Our model and security analysis of Ordinos, presented in the fol-
lowing sections are, however, more general and apply to arbitrary instantiations
of Ordinos as long as certain assumptions are met.

7 Variants of the protocol are conceivable where a voter is supposed to sign her ballot
and the authentication server presents such a signature in the case of a dispute (see,
e.g., [22]). This also helps in preventing so-called ballot stuffing.

8 πMPC will typically consist of several NIZKPs, e.g., NIZKPs of correct decryption,
etc. See also our instantiation in Section 7.

3 Model

In this section, we formally model the Ordinos voting protocol, with more details
provided in Appendix D and E, and details to PMPC given in Appendix G.
This model is the basis for our security analysis of Ordinos carried out in the
following sections. Our model of Ordinos is based on a general computational
model proposed in [23]. This model introduces the notions of processes, protocols,
instances, and properties, which we briefly recall first.

Process. A process is a set of probabilistic polynomial-time (ppt) interactive
Turing machines (ITMs, also called programs) which are connected via named
tapes (also called channels). We write a process π as π = p1‖ · · · ‖pl, where
p1, . . . , pl are programs. If π1 and π2 are processes, then π1‖π2 is a process,
provided that the processes have compatible interfaces. A process π where all
programs are given the security parameter 1` is denoted by π(`). In the processes
we consider, the length of a run is always polynomially bounded in `. Clearly, a
run is uniquely determined by the random coins used by the programs in π.

Protocol. A protocol P is defined by a finite set of agents Σ (also called parties
or protocol participants), and for each agent a ∈ Σ its honest program π̂a, i.e.,
the program this agent is supposed to run. Agents are pairwise connected by
tapes/channels and every agent has a channel to the adversary (see below). If
π̂a1 , . . . , π̂al are the honest programs of the agents of P, then we denote the
process π̂a1‖ . . . ‖π̂al by π̂P.

The process π̂P is always run with an adversary A, an arbitrary ppt program
with channels to all protocol participants in π̂P. For any program πA run by the
adversary, we call π̂P‖πA an instance of P. Now, a run r of P with the adversary
πA is a run of the process π̂P‖πA. We consider π̂P‖πA to be part of the description
of r so that it is always clear to which process, including the adversary, the run
r belongs to.

We say that an agent a is honest in a protocol run r if the agent has not
been corrupted in this run: an adversary πA can corrupt an agent by sending
a corrupt message; once corrupted, an adversary has full control over an agent.
In our security analysis of Ordinos, we assume static corruption, i.e., agents can
only be corrupted at the beginning of a run. In particular, the corruption status
of each party is determined at the beginning of a run and does not change during
a run. Also, for some agents we will assume that they cannot be corrupted.

Modeling of Ordinos. The Ordinos voting protocol can be modeled in a straight-
forward way as a protocol POrdinos(nvoters, ntrustees, µ, pverify, paudit, ftally) in the above
sense, as detailed next. By nvoters we denote the number of voters Vi and by
ntrustees the number of trustees Tk. By µ we denote a probability distribution
on the set of choices C, including abstention. An honest voter makes her choice
according to this distribution.9 This choice is called the actual choice of the

9 This in particular models that adversaries know this distribution. In reality, the ad-
versary might not know this distribution precisely. This, however, makes our security
results only stronger.

voter. By pverify ∈ [0, 1] we denote the probability that an honest voter Vi per-
forms the check described in Section 2, voter verification phase.10 We denote
the probability that a given (arbitrary) ballot is audited by an honest voter by
paudit ∈ [0, 1].11 As before, ftally is the (tally-hiding) result function.

In our model of Ordinos, the voting authority Auth is part of an additional
agent, the scheduler S. Besides playing the role of the authority, S schedules
all other agents in a run according to the protocol phases. We assume that S
and the bulletin board B are honest, i.e., they are never corrupted. While S is
merely a virtual entity, in reality, B should be implemented in a distributed way
(see, e.g., [29,39]). We also require that the voters’ verification devices VVDi are
honest; Helios makes this assumption, too. This is a reasonable assumption as
they may be provided by independent parties.

4 End-to-End Verifiability

In this section, we formally establish the level of (end-to-end) verifiability pro-
vided by Ordinos. We show that Ordinos inherits the level of verifiability from
the original Helios voting protocol. In particular, this implies that this level is
independent of ftally, and hence, the degree to which ftally hides the tally. This
might be a bit surprising at first since less information being published might
mean that a system provides less verifiability.

Our analysis of Ordinos in terms of verifiability uses the generic verifiability
framework by Küsters, Truderung, and Vogt (the KTV framework, originally
presented in [45] with some refinements in [23]). We briefly recall this framework
in Section 4.1 along with some instantiation needed for our analysis of Ordinos.
Beyond its expressiveness, the KTV framework is particularly suitable to analyze
Ordinos because (i) it does not make any specific assumptions on the result
function of the voting protocol, and (ii) it can, as illustrated here, also be applied
to MPC protocols. The results of our verifiability analysis of Ordinos are then
presented in Section 4.2.

10 It would be a bit more accurate to split up pverify into two probabilities because
it is more likely that a voter who voted checks whether her ballot appears on the
bulletin board than that a voter who did not vote checks whether her ID does not
appear. This has, for example, been taken into account in the security analysis of
the Helios protocol [47]. We could do the same for Ordinos, but for simplicity and in
order to concentrate more on the tally-hiding aspects, we do not distinguish these
two cases here. Also, checks by voters who abstained are mainly about preventing
ballot stuffing, which can be dealt with by other means as well (see also Footnote 7).

11 Following [47], one could as well consider a sequence of audit probabilities to model
that the probably of the voter auditing a ballot decreases with the number of audits
she has performed.

4.1 Verifiability Framework

In a nutshell, an e-voting system provides verifiability if the probability that the
published result is not correct but no one complains and no checks fail, i.e., no
misbehavior is observed, is small (bounded by some small δ ∈ [0, 1]).

Judge. More specifically, the KTV verifiability definition assumes a judge J
whose role is to accept or reject a protocol run by writing accept or reject on a
dedicated channel decisionJ. To make a decision, the judge runs a so-called judg-
ing procedure, which performs certain checks (depending on the protocol spec-
ification), such as the verification of all zero-knowledge proofs in Ordinos and
taking voter complaints into account. Intuitively, J accepts a run if the protocol
run looks as expected. The input to the judge is solely public information, in-
cluding all information and complaints (e.g., by voters) posted on the bulletin
board. Therefore, the judge can be thought of as a “virtual” entity: the judging
procedure can be carried out by any party, including external observers and even
voters themselves. The specification of the judging procedure for Ordinos follows
quite easily from the description in Section 2.

Goal. The KTV verifiability definition is centered around the notion of a goal of
a protocol P, such as Ordinos or an MPC protocol. Formally, a goal γ is simply a
set of protocol runs. The goal γ specifies those runs which are “correct” in some
protocol-specific sense. For e-voting, the goal would contain those runs where
the announced election result corresponds to the actual choices of the voters.

In what follows, we describe the goal γ(k, ϕ) that we use to analyze end-
to-end verifiability of Ordinos. This goal has already been applied in [47] to the
original Helios protocol, where here we use a slightly improved version suggested
in [23]. The parameter ϕ is a Boolean formula that describes which protocol par-
ticipants are assumed to be honest in a run, i.e., not corrupted by the adversary.
For Ordinos, we set ϕ = hon(S) ∧ hon(J) ∧ hon(B) ∧

∧nvoters

i=1 hon(VVDi), i.e., the
scheduler S, the judge J, the bulletin board B, and all of the voters’ verification
devices VVD assumed to be honest. On a high level, the parameter k denotes
the maximum number of choices made by honest voters that the adversary is
allowed to manipulate. So, roughly speaking, altogether the goal γ(k, ϕ) contains
all those runs of a (voting or MPC) protocol P where either (i) at least one of
the parties S, J, or B have been corrupted (i.e., ϕ is false) or (ii) where none
of them have been corrupted (i.e., ϕ holds true) and where the adversary has
manipulated at most k votes/inputs of honest voters/input parties. We formally
define the goal γ(k, ϕ) in Appendix F.

Verifiability. Now, the idea behind the verifiability definition is very simple.
The judge J should accept a run only if the goal γ is met: as discussed, if γ =
γ(k, ϕ), then this essentially means that the published election result corresponds
to the actual choices of the voters up to k votes of honest voters. More precisely,
the definition requires that the probability (over the set of all protocol runs)
that the goal γ is not satisfied but the judge nevertheless accepts the run is

δ-bounded.12 Although δ = 0 is desirable, this would be too strong for almost
all e-voting protocols. For example, typically not all voters check whether their
ballot appears on the bulletin board, giving an adversary A the opportunity
to manipulate or drop some ballots without being detected. Therefore, δ = 0
cannot be achieved in general in e-voting protocols. The parameter δ is called
the verifiability tolerance of the protocol.

By Pr[π(`) 7→ ¬γ, (J : accept)] we denote the probability that π, with security
parameter 1`, produces a run which is not in γ but nevertheless accepted by J.

Definition 1 (Verifiability). Let P be a protocol with the set of agents Σ. Let
δ ∈ [0, 1] be the tolerance, J ∈ Σ be the judge, and γ be a goal. Then, we say
that the protocol P is (γ, δ)-verifiable by the judge J if for all adversaries πA
and π = (π̂P‖πA), the probability Pr[π(`) 7→ ¬γ, (J : accept)] is δ-bounded as a
function of `.13

4.2 End-to-End Verifiability of Ordinos

We are now able to precisely state and prove the verifiability level offered by
Ordinos according to Definition 1. The level depends on the voter verification
rate pverify, as described in Section 3.

Assumptions. We prove the verifiability result for Ordinos for the goal γ(k, ϕ),
with γ(k, ϕ) as defined in Section 4.1, and under the following assumptions:

(V1) The public-key encryption scheme E is correct (for verifiability, IND-
CPA-secure is not needed), πKeyShareGen and πEnc are NIZKPs, and the signature
scheme S is EUF-CMA-secure.

(V2) The scheduler S, the bulletin board B, the judge J, and all voter
verification devices VVDi are honest, i.e., ϕ = hon(S) ∧ hon(J) ∧ hon(B) ∧∧nvoters

i=1 hon(VVDi).
(V3) The MPC protocol PMPC is (γ(0, ϕ), 0)-verifiable, meaning that if the

output of PMPC does not correspond to its input, then this can always be detected
publicly.

Verifiability. The judging procedure performed by J essentially involves check-
ing signatures and NIZKPs. If one of these checks fails, the judge rejects the pro-
tocol run and hence the result. Also, J takes care of voter complaints as discussed
in Section 2.

Intuitively, the following theorem states that the probability that in a run
of Ordinos more than k votes of honest voters have been manipulated but the
judge J nevertheless accepts the run is bounded by δk(pverify).

12 A function f is δ-bounded if, for every c > 0, there exists `0 such that f(`) ≤ δ+ `−c

for all ` > `0.
13 We note that the original definition in [45] also captures soundness/fairness: if the

protocol runs with a benign adversary, which, in particular, would not corrupt par-
ties, then the judge accepts all runs. This kind of fairness/soundness can be consid-
ered to be a sanity check of the protocol, including the judging procedure, and is
typically easy to check. For brevity of presentation, we omit this condition here.

Theorem 1 (Verifiability). Under the assumptions (V1) to (V3) stated above,
the protocol POrdinos(nvoters, ntrustees, µ, pverify, paudit, ftally) is (γ(k, ϕ), δk(pverify, paudit))-
verifiable by the judge J where

δk(pverify, paudit) = max (1− pverify, 1− paudit)d
k+1
2 e .

The intuition and reasoning behind this theorem is as follows: In order to
break γ(k, ϕ), the adversary has to manipulate more than k votes of honest
voters (actually less, see below). Due to the NIZKPs and signatures employed,
we can show that such a manipulation is not detected only if none of the affected
honest voters perform their auditing or verification procedure. The probability

for this is max (1− pverify, 1− paudit)d
k+1
2 e: the exponent is not k+1, as one might

expect, but dk+1
2 e because, according to the formal definition of γ(k, ϕ), if the

adversary changes one vote of an honest voter from one choice to another, the
distance between the actual result and the manipulated one increases by two.

Note that, possibly surprisingly, our results show that the level of verifiability
provided by Ordinos is independent of the result function ftally, and hence, inde-
pendent of how much of the full tally is hidden by ftally: less information might
give the adversary more opportunities to manipulate the result without being
detected. Roughly speaking, the reason is that the goal γ(k, ϕ) is concerned with
the actual input to the voting protocol (as provided by the voters) rather than
its output (e.g., the complete result or only the winner).

The correctness of Theorem 1 follows immediately from an even stronger
result. In fact, Ordinos even provides accountability which is a stronger form of
verifiability as demonstrated in [45]. For verifiability, one requires only that, if
some goal of the protocol is not achieved (e.g., the election outcome does not
correspond to how the voters actually voted), then the judge does not accept
such a run (more precisely, he accepts it with a small probability only). The
judge, however, is not required to blame misbehaving parties. Conversely, ac-
countability requires that misbehaving parties are blamed, an important prop-
erty in practice as misbehavior should be identifiable and have consequences:
accountability serves as a deterrent. Now, analogously to the verifiability result
presented above, Ordinos inherits the accountability level of Helios. Due to space
limitations, we formally prove accountability of Ordinos in Appendix H.

5 Privacy

In this section, we carry out a rigorous analysis of the vote privacy of Ordinos. We
show that the privacy level of Ordinos is essentially ideal assuming the strongest
possible class of adversaries, as explained next.

Observe that if the adversary controls the authentication server, say, and
does not care at all about being caught cheating, then he could drop all ballots
except for one. Hence, the final result would only contain a single choice so that
the respective voter’s privacy is completely broken. This privacy attack applies
to virtually all remote e-voting systems, including Helios, as already observed
in [44], and later further investigated in [24].

Therefore, in general, a voting protocol can only provide vote privacy if an
adversary does not drop or replace “too many” ballots prior to the tallying
phase; this is necessary to ensure that a single voter’s choice is “hidden” behind
sufficiently many other votes. This class of adversaries is the strongest one for
which privacy can still be guaranteed under realistic assumptions.14 Now, for
this class of adversaries, we show that the privacy level of Ordinos coincides with
the privacy level of an ideal voting protocol, where merely the election result
according to the (tally-hiding) result function considered is published.

To better understand the relationship between the privacy level of a voting
protocol and the (tally-hiding) result function used, in Section 6 we study the
level of privacy of the ideal voting protocol in depth parameterized by the tally-
hiding result function, which then also precisely captures the level of privacy of
Ordinos.

We first introduce the class of adversaries as sketched above, and present the
privacy definition we use. We then state the privacy result for Ordinos.

5.1 Risk-Avoiding Adversaries

The privacy definition we use (see Section 5.2) requires that, except with a small
probability, the adversary should not be able to distinguish whether some voter
(called the voter under observation) voted for ch0 or ch1 when she runs her
honest program. Now, an adversary who controls the authentication server, say,
could drop or replace all ballots except for the one of the voter under observation.
The final result would then contain only the vote of the voter under observation,
and hence, the adversary could easily tell how this voter voted, which breaks
privacy.

However, such an attack is extremely risky: recall that the probability of being
caught grows exponentially in the number k of honest votes that are dropped or
changed (see Section 4). Thus, in the above attack where k is big, the probability
of the adversary to get caught would be very close to 1. In the context of e-voting,
where misbehaving parties that are caught have to face severe penalties or loss
of reputation, this attack seems completely unreasonable.

A more reasonable adversary would possibly consider dropping some small
number of votes, for which the risk of being caught is not too big, in order to
weaken privacy to some degree. To analyze this trade-off, we use the notion of
k-risk-avoiding adversaries that was originally introduced in [44] and adjust it
to our setting.15

Intuitively, a k-risk-avoiding adversary would not manipulate too many votes
of honest voters. More specifically, he would produce runs in which the goal

14 We note that there are privacy results where the class of adversaries considered is not
restricted (see, e.g., [15]), but these results essentially assume that manipulations are
not possible or manipulations are abstracted away in the modeling of the protocols
(see also the discussions in [24,44]).

15 In [44], such adversaries are called k-semi-honest. However, this term is misleading
since these adversaries do not have to follow the protocol.

γ(k, ϕ) holds true. From the (proof of the) verifiability result obtained in Sec-
tion 4, we know that whenever an adversary decides to break γ(k, ϕ) his risk
of being caught is at least 1 − δk(pverify, paudit): Consider a run in which γ(k, ϕ)
does not hold true and in which all random coins are fixed except for the ones
that determine which honest voters perform their verification procedure. Then,
the probability taken over these random coins that the adversary gets caught is
at least 1 − δk(pverify, paudit). That is, such an adversary knows upfront that he
will be caught with a probability of at least 1− δk(pverify, paudit) which converges
exponentially fast to 1 in k. Therefore, an adversary not willing to take a risk
of being caught higher than 1− δk(pverify, paudit) would never cause γ(k, ϕ) to be
violated, and hence, manipulate too many votes.

This motivates the following definition: an adversary is k-risk-avoiding in a
run of a protocol P if the goal γ(k, ϕ) is satisfied in this run. An adversary (of
an instance π of P) is k-risk-avoiding if he is k-risk-avoiding with overwhelming
probability (over the set of all runs of π).

5.2 Definition of Privacy

For our privacy analysis of Ordinos, we use the privacy definition for e-voting
protocols proposed in [46]. This definition allows us to measure the level of
privacy a protocol provides, unlike other definitions (see, e.g., [14]).

As briefly mentioned above, privacy of an e-voting protocol is formalized as
the inability of an adversary to distinguish whether some voter Vobs (the voter
under observation), who runs her honest program, voted for ch0 or ch1.

To define this notion formally, we first introduce the following notation. Let
P be an e-voting protocol (in the sense of Section 3 with voters, authorities,
result function, etc.). Given a voter Vobs and ch ∈ C, we now consider instances
of P of the form (π̂Vobs

(ch)‖π∗‖πA) where π̂Vobs
(ch) is the honest program of the

voter Vobs under observation who takes ch as her choice, π∗ is the composition of
programs of the remaining parties in P, and πA is the program of the adversary.
In the case of Ordinos, π∗ would include the scheduler, the bulletin board, the
authentication server, all other voters, and all trustees.

Let Pr[(π̂Vobs
(ch)‖π∗‖πA)(`) 7→ 1] denote the probability that the adversary

writes the output 1 on some dedicated channel in a run of (π̂Vobs
(ch)‖π∗‖πA)

with security parameter ` and some ch ∈ C, where the probability is taken over
the random coins used by the parties in (π̂Vobs

(ch)‖π∗‖πA).
Now, similarly to [46], we can define vote privacy. The definition is w.r.t. a

mapping A which maps an instance π of a protocol (excluding the adversary)
to a set of admissible adversaries; for Ordinos, for example, only k-risk-avoiding
adversaries are admissible.

Definition 2 (Privacy). Let P be a voting protocol, Vobs be the voter under
observation, A be a mapping as explained above, and δ ∈ [0, 1]. We say that P
achieves δ-privacy (w.r.t. A), if∣∣∣Pr[(π̂Vobs(ch0)‖π∗‖πA)(`) 7→ 1]− Pr[(π̂Vobs(ch1)‖π∗‖πA)(`) 7→ 1]

∣∣∣

is δ-bounded as a function of the security parameter 1`, for π∗ as defined above,
for all choices ch0, ch1 ∈ C\{abstain} and adversaries πA that are admissible for
π̂Vobs

(ch)‖π∗ for all possible choices ch ∈ C.16

The requirement ch0, ch1 6= abstain says that we allow the adversary to dis-
tinguish whether or not a voter voted at all.

Since δ often depends on the number nhonestvoters of honest voters, privacy is
typically formulated w.r.t. this number: the bigger the number of honest voters,
the smaller δ should be, i.e., the higher the level of privacy. Note that even
for an ideal e-voting protocol, where voters privately enter their votes and the
adversary sees only the election outcome, consisting of the number of votes
per candidate say, δ cannot be 0: there may, for example, be a non-negligible
chance that all honest voters, including the voter under observation, voted for
the same candidate, in which case the adversary can clearly see how the voter
under observation voted. Hence, it is important to also take into account the
probability distribution used by the honest voters to determine their choices; as
already mentioned in Section 3, we denote this distribution by µ. Moreover, the
level of privacy, also of an ideal voting protocol, will depend on the (tally-hiding)
result function, i.e., the information contained in the published result, as further
investigated in Section 6.

5.3 Privacy of Ordinos

We now prove that Ordinos provides a high level of privacy w.r.t. k-risk-avoiding
adversaries and in the case that at most t−1 trustees are dishonest, where t is the
decryption threshold of the underlying encryption scheme: clearly, if t trustees
were dishonest, privacy cannot be guaranteed because an adversary could simply
decrypt every ciphertext in the list of ballots. By “high level of privacy” we mean
that Ordinos provides δ-privacy for a δ that is very close to the ideal one.

More specifically, the formal privacy result for Ordinos is formulated w.r.t. an
ideal voting protocol Ivoting(fres, nvoters, nhonestvoters , µ). In this protocol, honest voters
pick their choices according to the distribution µ. In every run, there are nhonestvoters

many honest voters and nvoters voters overall. The ideal protocol collects the votes
of the honest voters and the dishonest ones (where the latter ones are indepen-
dent of the votes of the honest voters) and outputs the result according to the
result function fres. In Section 6, we analyze the privacy level δideal

(nvoters,nhonest
voters ,µ)

(fres)

this ideal protocol has depending on the given parameters.

Assumptions. To prove that the privacy level of Ordinos is essentially the ideal
one, we make the following assumptions about the primitives we use (see also
Section 2):

(P1) The public-key encryption scheme E is IND-CPA-secure, the signatures
are EUF-CMA-secure, and πKeyShareGen and πEnc are NIZKPs.

(P2) The MPC protocol PMPC realizes (in the sense of universal compos-
ability [18,43]) an ideal MPC protocol which essentially takes as input a vector

16 That is, πA ∈
⋂

ch∈CA(π̂Vobs(ch)‖π∗).

of ciphertexts and returns ftally evaluated on the corresponding plaintexts (see
Appendix G).

The level of privacy of Ordinos clearly depends on the number of ballots
cast by honest voters. In our analysis, to have a guaranteed number of votes by
honest voters, we assume that honest voters do not abstain from voting. Note
that the adversary would anyway know which voters abstained and which did
not.17 Technically:

(P3) The probability of abstention is 0 in µ.
(P4) For each instance π of POrdinos, the set A(π) of admissible adversaries

for π is defined as follows. An adversary πA belongs to A(π) iff it satisfies the
following conditions: (i) πA is k-risk-avoiding for π, (ii) the probability that πA
corrupts more than t−1 trustees in a run of π‖πA is negligible, (iii) the probabil-
ity that πA corrupts more than nhonestvoters voters in a run of π‖πA is negligible, and
(iv) the probability that πA corrupts an honest voter’s supporting or verification
device is negligible.

Now, the privacy theorem for Ordinos says that the level of privacy of Ordinos
for this class of adversaries is the same as the one for the ideal protocol with
nhonestvoters − k honest voters.

Theorem 2 (Privacy). Under the assumptions (P1) to (P4) stated above and
with the mapping A as defined above, the voting protocol POrdinos(nvoters, ntrustees,
µ, pverify, paudit, ftally) achieves a privacy level of δideal

(nvoters,nhonest
voters−k,µ)

(fres) w.r.t. A
where fres first counts the number of votes per candidate and then evaluates
ftally.

18

The proof is provided in Appendix J, where we reduce the privacy game
for Ordinos with nhonestvoters honest voters, as specified in Definition 2, to the privacy
game for the ideal voting protocol with nhonestvoters −k voters, by a sequence of games.

As discussed, since the risk of being caught cheating increases exponentially
with k, the number of changed votes k will be rather small in practice. But
then the privacy theorem tells us that manipulating just a few votes of honest
voters does not buy the adversary much in terms of weakening privacy. In fact,
as illustrated in Section 6, even with only 15 honest voters the level of privacy
does not decrease much when the adversary changes the honest votes by only a
few. Conversely, the (tally-hiding) result function can very well have a big effect
on the level of privacy of the ideal protocol, and hence, also on Ordinos: whether

17 We note that some techniques were proposed to ensure that the adversary cannot
distinguish whether a given voter submitted a ballot or not (see, e.g., [42]). This prop-
erty is called participation privacy. However, all published approaches to guarantee
participation privacy have some kind of disadvantages (e.g., intrinsic vulnerabilities
against DDoS attacks).

18 Recall that in Ordinos, the tallying function ftally is evaluated over the homomorphi-
cally aggregated votes, i.e., the vector that encrypts the total number of votes for
each candidate. Conversely, the more general result function fres of the ideal voting
protocol receives the voters’ choices as input. Hence, fres needs to first aggregate the
votes and then apply ftally.

only the winner of an election is announced or the complete result is published
typically has a big effect on the level of privacy provided by the system.

6 Privacy of the Ideal Protocol

As discussed in Section 5.2, the level δ of privacy is bigger than zero for virtually
every voting protocol, as some information is always leaked by the result of the
election. In order to have a lower bound on δ for all tallying-hiding voting proto-
cols (where the results are of the form considered below), including Ordinos, we
now determine the optimal value of δ for the ideal (tally-hiding) voting protocol.

The ideal voting protocol Ivoting(fres, nvoters, nhonestvoters , µ) has already been sketched
in Section 5. We now formally analyze how the privacy level δideal

(nvoters,nhonest
voters ,µ)

(fres)

of the ideal voting protocol depends on the specific (tally-hiding) result func-
tion fres in relation to the number of voters nvoters, the number of honest voters
nhonestvoters , and the probability distribution µ according to which the honest voters
select their choices.

We developed a formula for the optimal level of privacy
δideal
nvoters,nhonest

voters ,µ
(fres) for the the ideal voting protocol Ivoting(fres, nvoters, nhonestvoters , µ).

The following theorem shows that the level
δideal
nvoters,nhonest

voters ,µ
(fres) is indeed optimal (see Appendix I for the precise formula and

for the proof of the theorem).

Theorem 3. The ideal protocol Ivoting(fres, nvoters, nhonestvoters , µ) achieves δideal
nvoters,nhonest

voters ,µ
(fres)-

privacy. Moreover, it does not achieve δ′-privacy for any δ′ < δideal
nvoters,nhonest

voters ,µ
(fres).

Impact of hiding the tally. In the following, we compare the levels of privacy
of the ideal protocol for some practically relevant tally-hiding result functions,
namely frank where the ranking of all candidates is published (but not the number
of votes per candidate), fwin where only the winner of the election is published
(again, no number of votes), and fcomplete where the whole result of the election
is published, i.e., the number of votes per candidate (as in almost all verifiable
e-voting systems, including, e.g., Helios). We denote the corresponding privacy
levels by δidealrank , δidealwin , and δidealcomplete, respectively.

In general, more information means less privacy. Depending on the distri-
bution on the candidates, in general δidealcomplete is bigger than δidealrank which in turn

is bigger than δidealwin ; see Figure 1 for an example.
Revealing the complete result can lead to much worse privacy. To some extent,

this is demonstrated already by Figure 1. Another, more extreme example is
given in Appendix I.2, Figure 6.

The balancing attack. As just mentioned, the difference between δidealwin and
δidealcomplete can be very big if one choice has a bigger probability. We now illustrate
that sufficiently many dishonest voters can help to cancel out the advantage
of tally-hiding functions in terms of the privacy of single voters. We call this
the balancing attack. More specifically, the adversary can use dishonest voters

to balance the probabilities for candidates. For illustration purposes consider
the case of ten honest voters and two candidates, where the first candidate has
a probability of 0.9. Now, if eight dishonest voters are instructed to vote for
the second candidate, the expected total number of votes for each candidate
is nine. Hence, the choice of the voter under observation is indeed relatively
often crucial for the outcome of fwin, given this distribution. As the number of
dishonest voters is typically small in comparison to the number of honest voters,
this balancing attack is not effective for big elections, but it might be in small
elections, with a few voters and a few candidates; the latter is illustrated by
Figure 7 in Appendix I.2.

Sometimes ranking is not better than the complete result. If candidates are
distributed uniformly, it is easy to show that δidealcomplete = δidealrank . The reason is
that the best strategy for the adversary to decide whether the observed voter
voted for i or j is to choose i if i gets more votes than j, and this strategy
is applicable even if only the ranking is published. We note that fwin is still
better, i.e., δidealwin < δidealcomplete = δidealrank . A concrete example is given in Appendix I.2,
Figure 8.

We finally note that due to Theorem 2, these results directly carry over to
Ordinos. Also, they yield a lower bound for privacy of tally-hiding systems in
general.

0

0.2

0.4

0.6

0.8

1

1 5 10 15 20 50

number of honest voters (without the observed voter)

p
ri

va
cy

le
v
el

(δ
)

fcomplete

frank
fwin

Fig. 1: Level of privacy (δ) for the ideal protocol with three candidates, p1 = 0.6,
p2 = 0.3, p3 = 0.1 and no dishonest voters.

7 Instantiation of Ordinos

In this section, we provide an instantiation of the generic Ordinos protocol with
concrete cryptographic primitives; in Section 8, we then describe our implemen-
tation of this instantiation of Ordinos and provide several benchmarks, demon-
strating its practicability.

Tally-hiding result functions. Our instantiation can be used to realize many
different practically relevant tally-hiding result functions. They all have in com-
mon that they reveal chosen parts of the final candidates’ ranking (with or
without the number of votes a candidate received), for example, the complete
ranking, only the winner of the election, the ranking or the set of the best/worst

three candidates, only the winner under the condition that she received at least,
say, fifty percent of the votes, etc. We describe how to realize these different
variants below.

Cryptographic primitives. For our instantiation we use the standard thresh-
old variant of the Paillier public-key encryption scheme [51] as the (t, ntrustees)-
threshold public-key encryption scheme E . The main reason for choosing Paillier
instead of exponential ElGamal [34] (as in the original Helios protocol) is that for
the MPC protocol below the decryption algorithm Dec of E needs to be efficient.
This is not the case for exponential ElGamal, where decryption requires some
brute forcing in order to obtain the plaintext.

The NIZKP πEnc that the voters have to provide for proving knowledge and
well-formedness of the chosen ch ∈ C can be based on a standard proof of
plaintext knowledge for homomorphic encryption schemes, as described in [53],
in combination with [26].

The NIZKP πKeyShareGen depends on the way public/private keys are shared
among the trustees. One could, for example, employ the protocol by Algesheimer
et al. [9], which includes a NIZKP πKeyShareGen. Also, solutions based on trusted
hardware are conceivable. Note that setting up key shares for the trustees is
done offline, before the election starts, and hence, this part is less time critical.
For simplicity, in our implementation (see Section 8), we generate key shares
centrally for the trustees, essentially playing the role of a trusted party in this
respect.

As for the signature scheme S, any EUF-CMA-secure can be used.

The most challenging part of the instantiating of Ordinos is to construct
an efficient MPC protocol PMPC for evaluating practically relevant tally-hiding
result functions, which at the same time satisfies the conditions for verifiability
(see Section 4.2) as well as privacy (see Section 5.3). We now describe such a
construction.

Overview of PMPC. The cornerstone of our instantiation of PMPC is a secure
MPC protocol Pgt

MPC that takes as input two secret integers x, y and outputs a
secret bit b that determines whether x ≥ y, i.e., b = (x ≥ y).

We instantiate Pgt
MPC with the “greater-than” MPC protocol by Lipmaa and

Toft [50] which has been proposed for an arbitrary arithmetic blackbox (ABB),
which in turn we instantiate with the Paillier public-key encryption scheme,
equipped with NIZKPs from [53]. Lipmaa and Toft demonstrated that their
protocol is secure in the malicious setting. Due to the NIZKPs this protocol em-
ploys, it provides verifiability in our specific instantiation, i.e., if the outcome of
the protocol is incorrect, this is detected.19 Importantly, the protocol by Lipmaa
and Toft comes with sublinear online complexity which is superior to all other
“greater-than” MPC protocols to the best of our knowledge. This is confirmed
by our benchmarks which show that the communication overhead is quite small
(see Section 8). Similarly, we also use the secure MPC protocol Peq

MPC by Lipmaa
and Toft [50] which secretly evaluates equality of two secret integers.

19 It even provides individual accountability (see Appendix K).

Now, PMPC is carried out in two phases in Ordinos. In the first phase, given the
vector cunsorted of the encrypted number of votes per candidate (see Section 2),
the trustees collaboratively run several instances of the greater-than-test Pgt

MPC in
order to obtain a ciphertext vector crank which encrypts the overall ranking of the
candidates. In the second phase, the resulting ciphertext vector (plus possibly
cunsorted) is used to realize the desired tally-hiding result function.

These two phases are described in more detail in what follows.

First phase: Computing the secret ranking. Recall that in
Ordinos each ballot b is a tuple (id, c, πEnc), where id is the voter’s id, c =
(c[1], . . . , c[noption]) is a ciphertext vector that encrypts the voter’s choice, and
πEnc is a NIZKP for proving knowledge of the choice/plaintexts and well-formedness
of the ciphertext vector (e.g., for proving that exactly a single c[i] ∈ c encrypts
1, while all other ciphertexts in c encrypt 0, if a voter can give only one vote
to one candidate/option). The input to the tallying phase consists of the ballots
with valid NIZKPs πEnc.

In the first step of the tallying phase, the ciphertext vectors c of all valid
ballots are homomorphically summed up to obtain a ciphertext vector cunsorted =
(cunsorted[1], . . . , cunsorted[noption]) where cunsorted[i] encrypts the total number of
votes for the ith candidate.

In the second step, we essentially apply the direct sorting algorithm [19] to
cunsorted.

More precisely, in what follows we denote by Dec(c) the distributed decryp-
tion of a ciphertext c by the trustees. Now, for each pair of candidates/options,
say i and j, the trustees run the equality test Peq

MPC with input (cunsorted[i], cunsorted[j])
and output ceq[i, j] which decrypts to 1 if Dec(cunsorted[i]) = Dec(cunsorted[j])
and to 0 otherwise. Clearly, the trustees need to run the protocol Peq

MPC only
(noption−1)noption

2 many times because ceq[i, i] always decrypts to 1 and ceq[j, i] =
ceq[j, i]. In fact, this step (which comes with almost no communicational and
computational overhead) will be used to speed up the following step.

For each pair of candidates/options, say i and j, the trustees now run the
greater-than protocol Pgt

MPC with input (cunsorted[i], cunsorted[j]) and output cgt[i, j]
which decrypts to 1 if and only if Dec(cunsorted[i]) ≥ Dec(cunsorted[j]) and to
0 otherwise. Thanks to the previous step, the trustees need to run the Pgt

MPC

protocol only
(noption−1)noption

2 many times because cgt[i, i] always decrypts to 1
and cgt[j, i] can easily be computed from cgt[i, j] because cgt[j, i] = Enc(1) −
cgt[i, j] + ceq[i, j].

All of these ciphertexts are stored in an noption × noption comparison matrix
Mrank:

cgt[1, 1] cgt[2, 1] . . . cgt[noption, 1]
cgt[1, 2] cgt[2, 2] . . . cgt[noption, 2]

...
...

...
...

cgt[1, noption] cgt[2, noption] . . . cgt[noption, noption]

Based on this matrix, everyone can compute an encrypted overall ranking

of the candidates: for each column i of Mrank, the homomorphic sum crank[i] =

∑noption

j=1 cgt[i, j] encrypts the total number of pairwise “wins” of the ith candidate
against the other candidates, including i itself. For example, if the ith candidate
is the one which has received the fewest votes, then Dec(crank[i]) = 1 because
Dec(cgt[i, i]) = 1, and if it has received the most votes, then Dec(crank[i]) =
noption. We collect all of these ciphertexts in a ranking vector crank = (crank[1], . . . , crank[noption]).

Second phase: Calculating the election result. First note that, for ex-
ample, Dec(crank) = (6, 6, 6, 3, 3, 3) is a possible plaintext ranking vector, which
says that the first three candidates are the winners, they are on position 1. As
a result, no one is on position 2 or 3 (following common conventions). The last
three candidates are on position 4; no one is on position 5 or 6. Note that, for
example, Dec(crank) = (6, 6, 6, 3, 3, 2) is not a possible plaintext ranking vector.

Using crank and cunsorted, we can, for example, realize the following families of
tally-hiding result functions and combinations thereof.

Revealing the candidates on the first n positions only. There are three vari-
ants:

(i) Without ranking, i.e., the set of these candidates: For all candidates i, the
trustees run the greater-than test Pgt

MPC with input (crank[i],Enc(noption− n+ 1))
and decrypt the resulting ciphertext. Candidate i belongs to the desired set iff
the decryption yields 1. The case n = 1 means that only the winner(s) is/are
revealed.

(ii) With ranking: For all candidates i, the trustees execute the equality-test
Peq
MPC with input (crank[i],Enc(noption − k + 1)) for all 1 ≤ k ≤ n and decrypt

the resulting ciphertext. Then, candidate i is on the k-th position iff for k the
test returns 1. If no test returns 1, i is not among the candidates on the first n
positions.

(iii) Including the number of votes: The trustees decrypt the ciphertext
cunsorted[i] of each candidate i that has been output in the previous variant.

Revealing the candidates on the last n positions. Observe that we can con-
struct a less-than test Plt

MPC from the results of the equality tests Peq
MPC and the

greater-than tests Pgt
MPC for free: clt[i, j] = Enc(1) − cgt[i, j] + ceq[i, j]. Now, re-

place all cgt[i, j] in the encrypted comparison matrix Mrank with clt[i, j]. Then,
the same procedures as described for the n best positions above yield the desired
variants for the n worst positions.

Threshold tests. For a given threshold τ , the trustees run the greater-than
test Pgt

MPC with input (cunsorted[i],Enc(τ)) for all candidates i. For example, with
τ being half of the number of votes, the trustees can check whether there is a
candidate who wins the absolute majority of votes.

Example of a combination. Coming back to an example already mentioned
in Section 1, consider an election that is carried out in two rounds. In the first
round, there are several candidates. If one of them wins the absolute majority of
votes, she is the winner. If not, there is a second round between the candidates on
the first two positions. The winner of the second round wins the election. Using
our instantiation, no unnecessary information needs to be leaked to anybody in
any round of such an election.

In what follows, we denote (tally-hiding) results functions realized as de-
scribed above by fOrdinos.

Verifiability of our Instantiation of Ordinos. As mentioned before, our
instantiations of Pgt

MPC and Peq
MPC are verifiable, i.e., everyone can tell whether a

trustee misbehaved, mainly due to the NIZKPs employed. This implies that our
protocol PMPC is verifiable up to the point where crank is computed. In the second
phase of PMPC, again Pgt

MPC and Peq
MPC are used as well as distributed verifiable

decryption (which anyway is part of Pgt
MPC and Peq

MPC). This phase therefore is
also verifiable. Altogether, we obtain the following theorem.

Theorem 4 (Verifiability of PMPC). Let ϕ = hon(S)∧hon(J)∧hon(B). Then,
the protocol PMPC, as defined above, is (γ(0, ϕ), 0)-verifiable.

With this, assumption (V3) for Theorem 1 is satisfied. Since the distributed
Paillier public-key encryption scheme is correct, the signature scheme S is EUF-
CMA-secure, and the proof πEnc is a NIZKP, also assumption (V1) is satisfied.
With the judge J defined analogously to the one of the generic Ordinos system, we
can therefore conclude that our instantiation enjoys the same level of verifiability
level as the generic Ordinos system.

Corollary 1 (Verifiability). Let ϕ = hon(S)∧hon(J)∧hon(B)∧
∧nvoters

i=1 hon(VVDi).
Then, the instantiation of POrdinos(nvoters, ntrustees, µ, pverify, paudit, fOrdinos) presented
above is (γ(k, ϕ), δk(pverify, paudit))-verifiable by the judge J where

δk(pverify, paudit) = max (1− pverify, 1− paudit)d
k+1
2 e .

Privacy of our Instantiation of Ordinos. Lipmaa and Toft [50] showed that
Pgt
MPC and Peq

MPC are secure MPC protocols in a completely malicious setting
under the assumption that the underlying ABB is realized correctly. In our in-
stantiation, the ABB is correctly realized by the (standard) NIZKPs from [53]
and under the assumption that at least the threshold of t trustees are honest.
Now, it is easy to show that, given Pgt

MPC and Peq
MPC, the sorting algorithm that

in the end yields crank does not leak any information (the same operations are
performed on all ciphertexts and all results are encrypted). Similarly, the eval-
uation of fOrdinos as discussed above also does not leak any information except
for the final result according to fOrdinos. From this, we can conclude that our
instantiation of PMPC realizes (in the sense of universal composability) the ideal
MPC functionality IMPC defined in Appendix G, which given a vector of en-
crypted integers (in our case cunsorted) returns the result of fOrdinos evaluated on
the (plaintext) integers.

Theorem 5. The protocol PMPC, as defined above, realizes the ideal MPC func-
tionality IMPC for tally-hiding result functions fOrdinos as described above.

With this, our instantiation of the generic Ordinos system satisfies all as-
sumptions made in Theorem 2, and hence, as an immediate corollary of this
theorem we obtain that this instantiation essentially provides the same level of
privacy as the ideal voting protocol for tally-hiding result functions fOrdinos.

Corollary 2 (Privacy). The above instantiation of the protocol POrdinos(nvoters, ntrustees,
µ, pverify, paudit, fOrdinos) with nhonestvoters honest voters achieves δideal

(nvoters,nhonest
voters−k,µ)

(fres)

privacy w.r.t. the mapping A to sets of admissible adversaries, with A and fres
as in Theorem 2.

Optimizations. We note that for some specific result functions, the perfor-
mance of the tallying procedure of the instantiation of Ordinos described above
can be improved. For example, if we want to realize a tally-hiding result func-
tion that reveals (at least) the full ranking without the number of votes, then
we can also use “classical” sorting algorithms (e.g., Quicksort or Insertion Sort).
To realize such algorithms, in which intermediate comparison results determine
the remaining sorting process, we run Pgt

MPC and immediately decrypt its output:
while the decryption reveals information about the ranking of candidates, this
information was not supposed to be kept secret. By this, average-case runtime
can (asymptotically) be reduced from O(n2cand) to O(ncand · log ncand), and in the
best case the runtime might even be close to linear. Hence, as demonstrated in
Section 8, performance can significantly be improved. Observe, however, that we
cannot use such sorting algorithms if we want to reveal less than the complete
ranking, e.g., only the winner.

8 Implementation

We implemented Ordinos according to Section 7. The main purpose of our im-
plementation was to be able to evaluate the performance of the system in the
tallying phase, which is the most time critical part. Our benchmarks therefore
concentrate on the tallying phase. In particular, we generated the offline material
for Peq

MPC and Pgt
MPC in a trusted way (see Section 7 for alternatives).

Recall that the tallying phase consists of two parts. In the first part, the
trustees generate crank for input cunsorted. In the second part, the trustees evaluate
a specific tally-hiding result function with input crank (and possibly cunsorted). The
first part, in particular constructing Mrank, accounts for the vast communication
and computation complexity. We provide several benchmarks for running the
first part depending on the number of voters, trustees, and candidates for the
scenarios where the trustees (i) run on one machine, (ii) communicate over a
local network, or (iii) over the Internet. We also demonstrate that the second
part (evaluating a specific tally-hiding result function) is negligible in terms of
runtime.

Our implementation is written in Python, extended with the gmpy2 module
to accelerate modular arithmetic operations. The key length of the underlying
Paillier encryption scheme is 2048 bits; see below for details of the machines.

We first note that the length of encrypted integers to be compared by Pgt
MPC

determines the number of recursive calls of Pgt
MPC from [50]. This protocol, in a

nutshell, splits the inputs in an upper and lower half and calls itself with one
of those halves, depending on the output of the previous comparison. Hence, we
use powers of 2 for the bit length of the integers. On a high level, this is also the

reason for the logarithmic online complexity of Pgt
MPC. For our implementation,

we assume that each voter has one vote for each candidate. Therefore, we use 216

bit integers for less than 216 voters and 232 bit integers for less than 232 voters.
In summary, the benchmarks illustrate that our implementation is quite prac-

tical, even for an essentially unlimited number of voters and several trustees
independently of whether the implementation runs over a local network or the
Internet. The determining factor in terms of performance is the number of can-
didates. More specifically, in what follows we first present our benchmarks for
the first part of the tallying phase (computing crank) and then briefly discuss the
second part.

First phase: computing crank. Figure 2 demonstrates that the running time is
independent of any specific number of voters (as long as it is smaller than the
maximum number allowed, in this case less than 232 − 1 voters).

200000 400000 600000 800000 1000000
voters

1.3

1.4

1.5

1.6

tim
e

[m
in

]

Runtime

Fig. 2: Three trustees on a local network and five candidates; 32-bit integers for
vote counts.

The blue graph (the second from below) in Figure 3 shows that the running
time of our implementation is essentially independent of the number of trustees:
The time difference for the different numbers of trustees (two to eight on a local
network) are less than three seconds, and hence, not feasible in this figure. This
is due to the logarithmic online complexity of Pgt

MPC.
Figure 3 also demonstrates that the parameter that determines the running

time is the number of candidates, as Pgt
MPC needs to be invoked O(n2cand) times

to construct Mrank (see Section 7).
Furthermore, Figure 3 shows that the running time is quite independent of

the specific networks over which the trustees communicate. In the local network,
where we run each trustee (up to 8) on an ESPRIMO Q957 (64bit, i5-7500T
CPU @ 2.70GHz, 16 GB RAM), the running time is essentially the same as in

the case of running three trustees on three different cores of the same machine
(they differ by at most two seconds). In the setting Internet 1, we have used
the same machines and connected them with a VPN running on a server in a
different city so that the trustees effectively communicate over the Internet (via
a VPN node in a different city). The setting Internet 2 is more heterogeneous:
we used different machines20 for the trustees, located in different cities (and
partly countries), with two connected to the Internet via Wifi routers in home
networks. They were all connected over the Internet to the same VPN as in
Internet 1. Importantly, the difference between Internet 1 and Internet 2 is due
to two factors: (i) The slowest machine dictates the overall performance since
the other machines have to wait for the messages of this machine. While the
ESPRIMOs perform a greater-than test locally in about 8.5 seconds, the slowest
machine in this setup needs 10.5 seconds. (ii) The Internet connections from the
home networks are slower than those in Internet 1.

Second phase: computing a specific result function. In order to obtain an upper
bound for the runtime of the second phase, we benchmarked the most costly
tally-hiding result function among the functions listed in Section 7, namely the
one which reveals the set (without ranking) of the candidates on the first n
positions. Note that the runtime of this function does not depend on n. For 40
candidates, we needed about 6.33 minutes for this function, with three trustees
and 16-bit integers for vote counts, which is two orders of magnitude less than
what is needed for the first part of the tallying phase. Hence, the runtime for the
second phase is negligible. Since this part needs a linear number of greater-than
operations in the number of candidates and the first part is quadratic, this was
to be expected.

Optimizations. As described at the end of Section 7, if we want to reveal the full
ranking (without the number of votes), we can improve the overall runtime. To
illustrate this, we provide benchmarks of Insertion Sort in the setting Internet
1 with three trustees (see red line in Figure 3).21 As the runtime of Insertion
Sort depends on the degree to which its input is already sorted, we simulated
many different runs of Insertion Sort by distributing votes among the candidates
uniformly at random. For example, as can be seen from Figure 3, compared to
the general approach (in the same setting), Insertion Sort improves the runtime
by more than 15% for elections with 30 candidates and 25% for elections with 40
candidates; clearly, the improvement increases with the number of candidates.
Altogether, this demonstrates that for some specific result functions efficiency
can be further improved compared to the general approach.

20 One machine is as above, the second is an Intel Pentium G4500 (64bit, 2x3.5 GHz
Dualcore, 8 GB RAM, running Windows 10), and the third is an Intel Core i7-6600U
(CPU @ 2.60GHz, 2801 Mhz, 2 Cores 8 GB RAM, running Windows 10).

21 We note that we also applied Quicksort for these numbers of candidates (≤ 40) where
it was outperformed by Insertion Sort. For elections with many candidates (say ≥
100), Quicksort would, however, be a reasonable alternative due to its asymptotically
better average-case runtime.

5 10 15 20 25 30 35 40
candidates

0

25

50

75

100

125

150

175
tim

e
[m

in
]

Runtime

local network
2-8 trustees/
single machine
3 trustees
internet 1
3 trustees
internet 2
3 trustees
internet 1
3 trustees
insertion sort
average

Fig. 3: Trustees on a single machine, local network and on the Internet; 16-bit
integers for vote counts.

9 Related Work

In this section, we compare Ordinos with the only four tally-hiding voting pro-
tocols [12,17,36,55] that have been proposed so far, and a further voting proto-
col [27] that employs secure MPC for improving privacy and coercion-resistance,
but without being fully tally-hiding.

Benaloh [12] introduced the idea of tally-hiding e-voting and designed the
first protocol for tally-hiding more than thirty years ago. In contrast to modern
e-voting systems, in which trust is distributed among a set of trustees, Benaloh’s
protocol assumes a single trusted authority which also learns how each single
voter voted. Ordinos, in contrast, distributes trust among a set of trustees. As we
have proven, none of the trustees gains more information about a voter’s choice
than what can be derived from the final published (tally-hiding) result. It seems
infeasible to improve Benaloh’s protocol in this respect. Additionally, the system
lacks a security proof and also has not been implemented.

Hevia and Kiwi [36] designed a tally-hiding Helios-like e-voting system for
the case of jury votings, i.e., where 12 voters can either vote yes or no (0 or 1).
While this e-voting protocol seems to be a reasonable solution for this specific
setting (very few voters, only yes/no votes), its computational complexity cru-
cially depends on the number of voters, and it seems infeasible to generalize it to

handle several candidates. Furthermore, Hevia and Kiwi have neither analyzed
the security of their e-voting protocol nor implemented it.

Szepieniec and Prenell [55] proposed a tally-hiding voting protocol for which
they develop a specific greater-than MPC protocol. Unfortunately, this MPC
protocol is insecure, it leaks some information. The authors discuss some miti-
gations but do not solve the problem (see [55], Appendix A for details). Just as
the protocol by Benaloh, this protocol has not been implemented.

Canard et al. [17] have recently proposed a tally-hiding e-voting protocol
for a different kind of election than considered here: in their system, the voters
rank candidates and the winner of the election is calculated according to specific
rules. The focus of their work was on designing and implementing the MPC
aspects of the tallying phase. They do not design a complete e-voting protocol
(including the voting phase, etc.). In particular, modeling a complete protocol
(with e2e-verifiability) and analyzing its security was not in the scope of the
paper. In Appendix L, we compare the performance of our implementation with
theirs but we note again that Canard et al. tackle a different kind of elections,
making a fair comparison hard.

Also very recently, Culnane et al. [27] proposed an instant-runoff voting (IRV)
protocol in which the voters encrypt their personal ranking and the trustees run
a secure MPC protocol in order to evaluate the winner without decrypting the
single voters’ encrypted rankings. The focus of this work was on mitigating so-
called Italian attacks. We note that the protocol by Culnane et al. has not been
designed to hide the tally completely: some information about the ranking of
candidates always leaks.

10 Conclusion

With Ordinos, we proposed the first provably secure (remote) tally-hiding e-
voting system. For the generic version of this protocol, we showed that it pro-
vides privacy and verifiability. More specifically, we proved that the level of
verifiability Ordinos provides does not depend on the tally-hiding result function
the system realizes. We also obtained general results for the level of privacy an
ideal voting protocol provides parameterized by the tally-hiding result function,
and showed that Ordinos enjoys the same level of privacy as the ideal protocol.
Besides proving the security of Ordinos, these results also give a deeper under-
standing of tally-hiding voting systems in general, a so far largely unexplored
field.

We demonstrated how the generic version of Ordinos can be instantiated for
practically relevant classes of tally-hiding result functions. We have implemented
Ordinos for these tally-hiding result functions and evaluated its performance,
illustrating that our implementation is quite practical, for several trustees and
independently of the number of voters.

Future work includes to enhance the set of tally-hiding result functions sup-
ported by (instantiations of) Ordinos and to improve efficiency.

References

1. https://www.scytl.com/en/customers/ (accessed 06.08.2019).
2. https://www.iacr.org/elections/eVoting/ (accessed 06.08.2019).
3. https://www.debian.org/vote/ (accessed 06.08.2019).
4. https://www.polyas.com/churches/church-council-elections/case-study

(accessed 06.08.2019).
5. https://www.forbes.com/sites/rebeccaheilweil1/2017/12/02/

eight-companies-that-want-to-revolutionize-voting-technology/

#29da2b3712c1 (accessed 06.08.2019).
6. https://blogs.microsoft.com/on-the-issues/2019/05/06/

protecting-democratic-elections-through-secure-verifiable-voting/

(accessed 06.08.2019).
7. B. Adida. Helios: Web-based Open-Audit Voting. In USENIX 2008, pages 335–348,

2008.
8. Ben Adida, Olivier de Marneffe, Olivier Pereira, and Jean-Jaques Quisquater.

Electing a University President Using Open-Audit Voting: Analysis of Real-World
Use of Helios. In USENIX/ACCURATE Electronic Voting Technology (EVT 2009),
2009.

9. Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient Computation Mod-
ulo a Shared Secret with Application to the Generation of Shared Safe-Prime
Products. In Advances in Cryptology - CRYPTO 2002, Proceedings, pages 417–
432, 2002.

10. Carsten Baum, Ivan Damg̊ard, and Claudio Orlandi. Publicly Auditable Secure
Multi-Party Computation. In Security and Cryptography for Networks - 9th Inter-
national Conference, SCN 2014. Proceedings, pages 175–196, 2014.

11. Susan Bell, Josh Benaloh, Mike Byrne, Dana DeBeauvoir, Bryce Eakin, Gail Fis-
cher, Philip Kortum, Neal McBurnett, Julian Montoya, Michelle Parker, Olivier
Pereira, Philip Stark, Dan Wallach, and Michael Winn. STAR-Vote: A Secure,
Transparent, Auditable, and Reliable Voting System. USENIX Journal of Elec-
tion Technology and Systems (JETS), 1:18–37, August 2013.

12. J. D. Benaloh. Improving Privacy in Cryptographic Elections (technical report).
Technical report, 1986.

13. Josh Benaloh. Ballot Casting Assurance via Voter-Initiated Poll Station Auditing.
In 2007 USENIX/ACCURATE Electronic Voting Technology Workshop, EVT’07,
Boston, MA, USA, August 6, 2007, 2007.

14. D. Bernhard, V. Cortier, D. Galindo, O. Pereira, and B. Warinschi. SoK: A Com-
prehensive Analysis of Game-Based Ballot Privacy Definitions. In S&P 2015, pages
499–516, 2015.

15. David Bernhard, Olivier Pereira, and Bogdan Warinschi. How Not to Prove Your-
self: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios. In Xiaoyun
Wang and Kazue Sako, editors, Advances in Cryptology - ASIACRYPT 2012 - 18th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Proceedings, volume 7658 of Lecture Notes in Computer Science,
pages 626–643. Springer, 2012.

16. Craig Burton, Chris Culnane, James Heather, Thea Peacock, Peter Y. A. Ryan,
Steve Schneider, Vanessa Teague, Roland Wen, Zhe Xia, and Sriramkrishnan Srini-
vasan. Using Prêt à Voter in Victoria State Elections. In J. Alex Halderman
and Olivier Pereira, editors, 2012 Electronic Voting Technology Workshop / Work-
shop on Trustworthy Elections, EVT/WOTE ’12, Bellevue, WA, USA, August 6-7,
2012. USENIX Association, 2012.

https://www.scytl.com/en/customers/
https://www.iacr.org/elections/eVoting/
https://www.debian.org/vote/
https://www.polyas.com/churches/church-council-elections/case-study
 https://www.forbes.com/sites/rebeccaheilweil1/2017/12/02/eight-companies-that-wa nt-to-revolutionize-voting-technology/#29da2b3712c1
 https://www.forbes.com/sites/rebeccaheilweil1/2017/12/02/eight-companies-that-wa nt-to-revolutionize-voting-technology/#29da2b3712c1
 https://www.forbes.com/sites/rebeccaheilweil1/2017/12/02/eight-companies-that-wa nt-to-revolutionize-voting-technology/#29da2b3712c1
 https://blogs.microsoft.com/on-the-issues/2019/05/06/protecting-democratic-elect ions-through-secure-verifiable-voting/
 https://blogs.microsoft.com/on-the-issues/2019/05/06/protecting-democratic-elect ions-through-secure-verifiable-voting/

17. Sébastien Canard, David Pointcheval, Quentin Santos, and Jacques Traoré. Prac-
tical Strategy-Resistant Privacy-Preserving Elections. In Computer Security - 23rd
European Symposium on Research in Computer Security, ESORICS 2018, pages
331–349, 2018.

18. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In Proceedings of the 42nd Annual Symposium on Foundations of Com-
puter Science (FOCS 2001), pages 136–145. IEEE Computer Society, 2001.

19. Gizem S. Çetin, Yarkin Doröz, Berk Sunar, and Erkay Savas. Depth Optimized
Efficient Homomorphic Sorting. In Progress in Cryptology - LATINCRYPT 2015,
Proceedings, pages 61–80, 2015.

20. D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R. L. Rivest, P. Y. A.
Ryan, E. Shen, and A. T. Sherman. Scantegrity II: End-to-End Verifiability for
Optical Scan Election Systems using Invisible Ink Confirmation Codes. In EVT
2008.

21. M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a Secure Voting
System. In S&P 2008, pages 354–368, 2008.

22. V. Cortier, D. Galindo, S. Glondu, and M. Izabachène. Election Verifiability for
Helios under Weaker Trust Assumptions. In ESORICS 2014, pages 327–344, 2014.

23. V. Cortier, D. Galindo, R. Küsters, J. Müller, and T. Truderung. SoK: Verifiability
Notions for E-Voting Protocols. In S&P 2016, pages 779–798, 2016.

24. Véronique Cortier and Joseph Lallemand. Voting: You Can’t Have Privacy without
Individual Verifiability. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, pages 53–66, 2018.

25. Véronique Cortier and Ben Smyth. Attacking and Fixing Helios: An Analysis of
Ballot Secrecy. In Proceedings of the 24th IEEE Computer Security Foundations
Symposium, CSF, 2011, pages 297–311, 2011.

26. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of Partial Knowl-
edge and Simplified Design of Witness Hiding Protocols. In Advances in Cryptology
- CRYPTO ’94, Proceedings, pages 174–187, 1994.

27. Chris Culnane, Olivier Pereira, Kim Ramchen, and Vanessa Teague. Universally
Verifiable MPC with Applications to IRV Ballot Counting. IACR Cryptology ePrint
Archive, 2018:246, 2018.

28. Chris Culnane, Peter Y. A. Ryan, Steve A. Schneider, and Vanessa Teague. vVote:
A Verifiable Voting System. ACM Trans. Inf. Syst. Secur., 18(1):3, 2015.

29. Chris Culnane and Steve A. Schneider. A Peered Bulletin Board for Robust Use
in Verifiable Voting Systems. In IEEE 27th Computer Security Foundations Sym-
posium, CSF, 2014, pages 169–183, 2014.

30. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
Computation from Somewhat Homomorphic Encryption. In Advances in Cryptol-
ogy - CRYPTO 2012. Proceedings, pages 643–662, 2012.

31. Der Bundesrat. Das Portal der Schweizer Regierung. E-Voting – Wie
wird die Sicherheit gehandhabt?, 2018. https://www.admin.ch/gov/de/start/

dokumentation/dossiers/E-Voting.html (accessed 22.11.2018).
32. Jeremy Epstein. Weakness in Depth: A Voting Machine’s Demise. IEEE Security

& Privacy, 13(3):55–58, 2015.
33. David Galindo, Sandra Guasch, and Jordi Puiggali. 2015 Neuchâtel’s Cast-as-

Intended Verification Mechanism. In Rolf Haenni, Reto E. Koenig, and Douglas
Wikström, editors, E-Voting and Identity - 5th International Conference, VoteID
2015, Bern, Switzerland, September 2-4, 2015, Proceedings, volume 9269 of Lecture
Notes in Computer Science, pages 3–18. Springer, 2015.

https://www.admin.ch/gov/de/start/dokumentation/dossiers/E-Voting.html
https://www.admin.ch/gov/de/start/dokumentation/dossiers/E-Voting.html

34. Taher El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In Advances in Cryptology, Proceedings of CRYPTO ’84,
pages 10–18, 1984.

35. Kristian Gjøsteen. The Norwegian Internet Voting Protocol. IACR Cryptology
ePrint Archive, 2013.

36. Alejandro Hevia and Marcos A. Kiwi. Electronic Jury Voting Protocols. In LATIN
2002: Theoretical Informatics, 5th Latin American Symposium, Cancun, Mexico,
April 3-6, 2002, Proceedings, pages 415–429, 2002.

37. A. Juels, D. Catalano, and M. Jakobsson. Coercion-Resistant Electronic Elections.
In Proceedings of Workshop on Privacy in the Eletronic Society (WPES 2005),
pages 61–70. ACM Press, 2005.

38. F. Karayumak, M. M. Olembo, M. Kauer, and M. Volkamer. Usability Analy-
sis of Helios - An Open Source Verifiable Remote Electronic Voting System. In
EVT/WOTE ’11, 2011.

39. Aggelos Kiayias, Annabell Kuldmaa, Helger Lipmaa, Janno Siim, and Thomas
Zacharias. On the Security Properties of e-Voting Bulletin Boards. In Security
and Cryptography for Networks - 11th International Conference, SCN 2018, Pro-
ceedings, pages 505–523, 2018.

40. Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. DEMOS-2: Scalable
E2E Verifiable Elections without Random Oracles. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel, editors, Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, October 12-6, 2015,
pages 352–363. ACM, 2015.

41. Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-End Verifiable
Elections in the Standard Model. In Advances in Cryptology - EUROCRYPT 2015,
volume 9057 of Lecture Notes in Computer Science, pages 468–498. Springer, 2015.

42. Oksana Kulyk, Vanessa Teague, and Melanie Volkamer. Extending Helios To-
wards Private Eligibility Verifiability. In E-Voting and Identity - 5th International
Conference, VoteID 2015, pages 57–73, 2015.

43. R. Küsters. Simulation-Based Security with Inexhaustible Interactive Turing
Machines. In Proceedings of the 19th IEEE Computer Security Foundations
Workshop (CSFW-19 2006), pages 309–320. IEEE Computer Society, 2006. See
http://eprint.iacr.org/2013/025/ for a full and revised version.

44. R. Küsters, J. Müller, E. Scapin, and T. Truderung. sElect: A Lightweight Verifi-
able Remote Voting System. In CSF 2016, pages 341–354, 2016.

45. R. Küsters, T. Truderung, and A. Vogt. Accountability: Definition and Relation-
ship to Verifiability. In CCS 2010, pages 526–535, 2010.

46. R. Küsters, T. Truderung, and A. Vogt. Verifiability, Privacy, and Coercion-
Resistance: New Insights from a Case Study. In S&P 2011, pages 538–553, 2011.

47. R. Küsters, T. Truderung, and A. Vogt. Clash Attacks on the Verifiability of
E-Voting Systems. In S&P 2012, pages 395–409, 2012.

48. R. Küsters, Max Tuengerthal, and Daniel Rausch. The IITM Model: a Simple
and Expressive Model for Universal Composability. Technical Report 2013/025,
Cryptology ePrint Archive, 2013. Available at http://eprint.iacr.org/2013/

025. To appear in the Journal of Cryptology.
49. Ralf Küsters, Tomasz Truderung, Melanie Volkamer, Bernhard Beckert, Achim

Brelle, Rüdiger Grimm, Nicolas Huber, Michael Kirsten, Jörn Müller-Quade, Max-
imilian Noppel, Kai Reinhard, Jonas Schwab, Rebecca Schwerdt, and Cornelia
Winter. GI Elections with POLYAS: a Road to End-to-End Verifiable Elections.
In Fourth International Joint Conference on Electronic Voting (E-Vote-ID 2019),
2019.

http://eprint.iacr.org/2013/025/
http://eprint.iacr.org/2013/025
http://eprint.iacr.org/2013/025

50. Helger Lipmaa and Tomas Toft. Secure Equality and Greater-Than Tests with
Sublinear Online Complexity. In Automata, Languages, and Programming - 40th
International Colloquium, ICALP 2013, Proceedings, Part II, pages 645–656, 2013.

51. Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In Advances in Cryptology - EUROCRYPT ’99, Proceeding, pages 223–
238, 1999.

52. Berry Schoenmakers and Pim Tuyls. Efficient Binary Conversion for Paillier En-
crypted Values. In Advances in Cryptology - EUROCRYPT 2006, Proceedings,
pages 522–537, 2006.

53. Berry Schoenmakers and Meilof Veeningen. Universally Verifiable Multiparty Com-
putation from Threshold Homomorphic Cryptosystems. In Applied Cryptography
and Network Security, ACNS 2015, Revised Selected Papers, pages 3–22, 2015.

54. D. Springall, T. Finkenauer, Z. Durumeric, J. Kitcat, H. Hursti, M. MacAlpine,
and J. A. Halderman. Security Analysis of the Estonian Internet Voting System.
pages 703–715, 2014.

55. Alan Szepieniec and Bart Preneel. New Techniques for Electronic Voting. USENIX
Journal of Election Technology and Systems (JETS), 3(2):46 – 69, 2015. Cryptology
ePrint Archive, Report 2015/809.

56. S. Wolchok, E. Wustrow, J. A. Halderman, H. K. Prasad, A. Kankipati, S. K.
Sakhamuri, V. Yagati, and R. Gonggrijp. Security Analysis of India’s electronic
Voting Machines. pages 1–14, 2010.

A Threshold Homomorphic Encryption

Threshold Public-Key Encryption Scheme. Let ntrustees be the number
of trustees Tk and t be a threshold. Let prm be the parameters including the
security parameter 1`.22 A (ntrustees, t)-threshold public-key encryption scheme
is a tuple of polynomial-time algorithms S = (KeyShareGen,PublicKeyGen,Enc,
DecShare,Dec) such that we have:

– KeyShareGen (which is run by a single trustee Tk) is probabilistic and outputs
two keys (pkk, skk), called the public-key share pkk and the secret-key share
skk,

– PublicKeyGen is deterministic and takes as input ntrustees public-key shares
pk1, . . . , pkntrustees

, and outputs a public key pk; this algorithm may fail (output
⊥) if the public-key shares are invalid,

– Enc is probabilistic and takes as input a public key pk and a message m, and
outputs a ciphertext c,

– DecShare (which is run by a single trustee Tk) is probabilistic and takes as
input a ciphertext c and a secret-key share skk, and outputs a decryption
share deck,

– Dec is deterministic and takes as input a tuple of decryption shares and
returns a message m or ⊥, in the case that decryption fails.

Furthermore, the following correctness condition has to be guaranteed. Let
(pkk, skk) be generated by KeyShareGen for all k ∈ {1, . . . , ntrustees} and let pk

22 We implicitly assume that all algorithms have prm as input.

be generated by the key generation algorithm PublicKeyGen(pk1, . . . , pkntrustees
).

Let c be an output of Enc(pk,m) and deck be an output of DecShare(c, skk) for
k ∈ I, where I ⊆ {1, . . . , ntrustees}. Then, we have

Dec({deck}k∈I) =

{
m if |I| ≥ t
⊥ otherwise

.

IND-CPA Security. Let C = (KeyShareGen,PublicKeyGen,Enc,DecShare,
Dec) be a (ntrustees, t)-threshold public-key encryption scheme.

Let ChEnc be a ppt algorithm, called a challenger, which takes as input a
bit b and a public key pk and serves the following challenge queries: For a pair
of messages (m0,m1) of the same length, return Enc(mb, pk) if pk 6= ⊥, or ⊥
otherwise.

Let A = (A1,A2,A3) be an adversary, where A1,A2,A3 share state and A3

has oracle access to ChEnc.
Let ExpA(b) be defined as follows:

1. I ← A1() where I ⊆ {1, . . . , ntrustees} and |I| ≥ t
2. (pki, ski)← KeyShareGen() for i ∈ I
3. pkj ← A2({pki}i∈I) for j ∈ {1, . . . , ntrustees} \ I
4. pk← PublicKeyGen(pk1, . . . , pkntrustees

)

5. b′ ← A
ChEnc(b,pk)
3 ()

6. output b′

We say that the (ntrustees, t)-threshold public-key encryption scheme is IND-
CPA secure if for all (polynomially bounded) adversaries A = (A1,A2,A3)

Pr(ExpA(0) outputs 1)− Pr(ExpA(1) outputs 1)

is negligible as a function in the security parameter `.

B Digital Signatures

Signature schemes. A digital signature scheme consists of a triple of algo-
rithms (KeyGen,Sign,Verify), where

1. KeyGen, the key generation algorithm, is a probabilistic algorithm that takes
a security parameter ` and returns a pair (verify, sign) of matching secret
signing and public verification keys.

2. Sign, the signing algorithm, is a (possibly) probabilistic algorithm that takes
a private signing key sign and a message x ∈ {0, 1}∗ to produce a signature
σ.

3. Verify, the verification algorithm, is a deterministic algorithm which takes
a public verification key verify, a message x ∈ {0, 1}∗ and a signature σ to
produce a boolean value.

We require that for all key pairs (verify, sign) which can be output by KeyGen(1`),
for all messages x ∈ {0, 1}∗, and for all signatures σ that can be output by
Sign(sign, x), we have that Verify(verify, x, σ) = true. We also require that KeyGen,
Sign and Verify can be computed in polynomial time.

EUF-CMA-secure. Let S = (KeyGen,Sign,Verify) be a signature scheme with
security parameter `. Then S is existentially unforgeable under adaptive chosen-
message attacks (EUF-CMA-secure) if for every probabilistic (polynomial-time)
algorithm A who has access to a signing oracle and who never outputs tuples
(x, σ) for which x has previously been signed by the oracle, we have that

Pr((verify, sign)← KeyGen(1`);

(x, σ)← ASign(sign,·)(1`, verify);

Verify(verify, x, σ) = true)

is negligible as a function in `.

C Non-Interactive Zero-Knowledge Proofs

C.1 Definitions

Non-Interactive Proof Systems. Let R be an efficiently computable bi-
nary relation. For pairs (x,w) ∈ R, x is called the statement and w is called
the witness. Let LR = {x | ∃w : (x,w) ∈ R}. A non-interactive proof sys-
tem for the language LR is a tuple of probabilistic polynomial-time algorithms
(Setup,Prover,Verifier), where

– Setup (the common reference string generator) takes as input a security
parameter 1` and the statement length n and produces a common reference
string σ ← Setup(n),23

– Prover takes as input the security parameter 1`, a common reference string
σ, a statement x, and a witness w and produces a proof π ← Prover(σ, x, w),

– Verifier takes as input the security parameter 1`, a common reference string σ,
a statement x, and a proof π and outputs 1/0← Verifier(σ, x, w) depending
on whether it accepts π as a proof of x or not,

such that the following conditions are satisfied:

– (Computational) Completeness: Let n = `O(1) and A be an adversary that
outputs (x,w) ∈ R with |x| = n. Then, the probability

Pr(σ ← Setup(n); (x,w)← A(σ);

π ← Prover(σ, x, w); b← Verifier(σ, x, π) : b = 1)

23 For simplicity of notation, we omit the security parameter in the notation, also for
the prover and the verifier.

is overwhelming (as a function of the security parameter 1`). In other words,
this condition guarantees that an honest prover should always be able to
convince an honest verifier of a true statement (which can be chosen by the
adversary A).

– (Computational) Soundness: Let n = `O(1) and A be a non-uniform polyno-
mial time adversary. Then, the probability

Pr(σ ← Setup(n); (x, π)← A(σ);

b← Verifier(σ, x, π) : b = 1 and x /∈ LR)

is negligible (as a function of the security parameter 1`). In other words, this
condition guarantees that it shoud be infeasible for an adversary to come up
with a proof π of a false statement x that is nevertheless accepted by the
verifier.

Zero-Knowledge. We say that a non-interactive proof system (Setup,Prover,Verifier)
is zero-knowledge (NIZKP) if the following condition is satisfied.

Let n = `O(1). There exists a polynomial-time simulator Sim = (Sim1,Sim2)
such that for all stateful, interactive, non-uniform polynomial-time adversaries
A = (A1,A2) that output (x,w) ∈ R with |x| = n, we have

Pr(σ ← Setup(n); (x,w)← A1(σ);

π ← Prover(σ, x, w); b← A2(π) : b = 1)

≈ Pr((σ, τ)← Sim1(n); (x,w)← A1(σ);

π ← Sim2(σ, x, τ); b← A2(π) : b = 1)

(where ≈ means that the difference between the two probabilities is negligible
as a function of the security parameter).

We use here the single-theorem variant of the zero-knowledge property, where
the common reference string is used to produce (and verify) only one ZK proof, as
opposed to the (general) multi-theorem variant of the zero-knowledge property,
where the same common reference string can be used to produce many proofs.
This suffices for our application, because, in the voting protocol we consider, the
number of ZK-proofs is bounded, which corresponds to the case, where A can
only submit a bounded number of queries. In such a case, the single-theorem
variant of the zero-knowledge property implies the multi-theorem variant (the
length of σ can be expanded by a factor of M , where M is the bound on the
number of ZKPs).

Proof of Knowledge. We say that a non-interactive proof system (Setup,Prover,Verifier)
produces a proof of knowledge if the following condition is satisfied.

There exists a knowledge extractor Extr = (Extr1,Extr2) such that for n =
`O(1), the following conditions hold true:

– For all non-uniform polynomial-time adversaries A, we have that

Pr(σ ← Setup(n); b← A(σ) : b = 1)

≈ Pr((σ, τ)← Extr1(n); b← A(σ) : b = 1).

– For all non-uniform polynomial-time adversaries A, we have that the prob-
ability

Pr((σ, τ)← Extr1(n); (x, π)← A(σ);

w ← Extr2(σ, τ, x, π);

b← Verifier(σ, x, π) : b = 0 or (x,w) ∈ R)

is overwhelming (as a function of the security parameter).

Note that (computational) knowledge extraction implies the existence of a wit-
ness and, therefore, it implies (computational) adaptive soundness.

C.2 (NIZK) Proofs used in the Protocol

Let (KeyShareGen,KeyGen,Enc,DecShare,Dec) be a (threshold) public-key en-
cryption scheme as defined in Appendix A. Then, the zero-knowledge proofs
used in the voting protocol are formally defined as follows:

– NIZKP πKeyShareGen of knowledge and correctness of the private key share.
For a given public key pki, the statement is:

∃ski : (pki, ski) is a valid key share pair.

– NIZKP πEnc of knowledge anc correctness of plaintext(s). Let Rm be an n-ary
relation over the plaintext space. For (c1, . . . , cn, pk), the statement is:

∃(m1, . . . ,mn) ∈ Rm ∀i ∃ri : ci = Enc(pk,mi; ri).

D General Computational Model

In this section, we explain our computational model (Section 3) in more details.

Process. A process is a set of probabilistic polynomial-time interactive Turing
machines (ITMs, also called programs) which are connected via named tapes
(also called channels). Two programs with a channel of the same name but
opposite directions (input/output) are connected by this channel. A process may
have external input/output channels, those that are not connected internally. At
any time of a process run, one program is active only. The active program may
send a message to another program via a channel. This program then becomes
active and after some computation can send a message to another program, and
so on. Each process contains a master program, which is the first program to be
activated and which is activated if the active program did not produce output
(and hence, did not activate another program). If the master program is active
but does not produce output, a run stops.

We write a process π as π = p1‖ · · · ‖pl, where p1, . . . , pl are programs. If
π1 and π2 are processes, then π1‖π2 is a process, provided that the processes
are connectible: two processes are connectible if common external channels, i.e.,

channels with the same name, have opposite directions (input/output); internal
channels are renamed, if necessary. A process π where all programs are given
the security parameter 1` is denoted by π(`). In the processes we consider, the
length of a run is always polynomially bounded in `. Clearly, a run is uniquely
determined by the random coins used by the programs in π.

Protocol. Typically, a protocol P contains a scheduler S as one of its partici-
pants which acts as the master program of the protocol process (see below). The
task of the scheduler is to trigger the protocol participants and the adversary
in the appropriate order. For example, in the context of e-voting, the scheduler
would trigger protocol participants according to the phases of an election, e.g.,
i) register, ii) vote, iii) tally, iv) verify.

The honest programs of the agents of P are typically specified in such a way
that the adversary A can corrupt the programs by sending the message corrupt.
Upon receiving such a message, the agent reveals all or some of its internal
state to the adversary and from then on is controlled by the adversary. Some
agents, such as the scheduler, will typically not be corruptible, i.e., they would
ignore corrupt messages. Also, agents might only accept corrupt messages upon
initialization, modeling static corruption. In our security analysis of Ordinos, we
assume static corruption.

We say that an agent a is honest in a protocol run r if the agent has not
been corrupted in this run, i.e., has not accepted a corrupt message throughout
the run. We say that an agent a is honest if for all adversarial programs πA the
agent is honest in all runs of π̂P‖πA, i.e., a always ignores all corrupt messages.

Property. A property γ of P is a subset of the set of all runs of P.24 By ¬γ we
denote the complement of γ.

E Formal Protocol Model of Ordinos

In this section, we precisely define the honest programs of all agents in Ordinos.

Set of agents in Ordinos. The set of agents of POrdinos consists of all agents de-
scribed in Section 2, i.e., the bulletin board B, nvoters (human) voters V1, . . . ,Vnvoters ,
voter supporting devices VSD1, . . . ,VSDnvoters , voter verification devices VVD1, . . . ,VVDnvoters ,
the authentication server AS, ntrustees trustees T1, . . . ,Tntrustees , and in addition,
a scheduler S. The latter party plays the role of the voting authority Auth and
schedule all other agents in a run according to the protocol phases. Also, it is
the master program in every instance of POrdinos. All agents are connected via
channels with all other agents; honest agents will not use all of these channels,
but dishonest agents might. The honest programs π̂a of honest agents a are de-
fined in the obvious way according to the description of the agents in Section 2.
We assume that the scheduler S and the bulletin board B are honest. All other
agents can possibly be dishonest. These agents can run arbitrary probabilistic

24 Recall that the description of a run r of P contains the description of the process
π̂P‖πA (and hence, in particular the adversary) from which r originates. Therefore,
γ can be formulated independently of a specific adversary.

(polynomial-time) programs. We note that the scheduler is only a modeling tool.
It does not exist in real systems. The assumption that the bulletin board is hon-
est is common; Helios makes this assumption too, for example. In reality, the
bulletin board should be implemented in a distributed way (see, e.g., [29, 39]).

Scheduler S. In every instance of POrdinos, the honest program π̂S of S plays
the role of the master program. We assume that it is given information about
which agents are honest and which are dishonest in order to be able to schedule
the agents in the appropriate way. In what follows, we implicitly assume that
the scheduler triggers the adversary (any dishonest party) at the beginning of
the protocol run and at the end of this run. Also, the adversary is triggered
each time an honest party finishes its computations (after being triggered by the
scheduler in some protocol step). This keeps the adversary up to date and allows
it to output its decision at the end of the run. By this, we obtain stronger secu-
rity guarantees. Similarly, we assume that the judge is triggered each time any
other party (honest or dishonest) finishes its computation (after being triggered
by the scheduler). This gives the judge the chance to output its verdict after
each protocol step. If the judge posts a message on the bulletin board B which
indicates to stop the whole protocol, then the scheduler triggers once more the
adversary (to allow it to output its decision) and then halts the whole system.
This means that no participants are further triggered. We also let the scheduler
create common reference strings (CRSs) for all the required NIZKPs, by calling
the setup algorithm of the non-interactive zero-knowledge proof systems used in
the protocol, and provide them to all parties.

In the remaining part of the section, we precisely describe the honest program
of the scheduler depending on the voting phase.

Scheduling the setup phase. At the beginning of the election, the scheduler
determines the set of possible choices defined as C ⊆ {0, . . . , nvpc}noption∪{abstain}
of valid choices where noption denotes the number of options/candidates, nvpc the
number of admissible votes per option/candidate, and abstain models that a
voter abstains from voting. Then, the scheduler generates a random number
idelection, the election identifier, with the length of the security parameter ` and
sends it to the bulletin board B which publishes idelection and C.25

After that, the scheduler first triggers all honest trustees Tk, which are sup-
posed to generate their verification/signing key pairs (verifyk, signk) and publish
the public (verification) keys verifyk on the bulletin board B, and then all the
dishonest ones. In what follows, we implicitly assume that each trustee Tk is
supposed to sign all of its messages to the bulletin board under signk.

Afterwards, the scheduler triggers all honest trustees, and then all dishonest
ones, in order to run the key share generation algorithm KeyShareGen of the
public-key encryption scheme scheme E . As a result, each trustee publishes a

25 Whenever we say that a party computes a signature on some message m, this im-
plicitly means that the signature is computed on the tuple (idelection, tag,m) where
idelection is an election identifier (different for different elections) and tag is a tag dif-
ferent for signatures with different purposes (for example, a signature on a list of
voters uses a different tag than a signature on a list of ballots).

public key share pkk (together with a NIZKP of correctness and knowledge of
the respective secret key share skk), so that the public key pk can be obtained
by running PublicKeyGen on the published public key shares.

Scheduling the voting phase. The scheduler first triggers all the honest voters
and then the dishonest ones, allowing them to cast their ballots to the authen-
tication server AS. After each such step (when the computations of a voter and
the authentication server are finished), the scheduler triggers the voter again in
order to allow the voter to post a complaint, if she does not get a valid acknowl-
edgement from the authentication server. As specified below, the authentication
server AS is modeled in such a way that it provides all collected ballots (even
before AS publishes them on the bulletin board B) to an arbitrary participant
who requests these ballots. Afterwards, the scheduler triggers the authentication
server which is supposed to publish the list of ballots b (containing the (first)
valid ballot cast by each eligible voter) on the bulletin board B.

Scheduling the voter verification phase. Similarly to the voting phase, the sched-
uler triggers first the honest voters who are supposed to verify (with probability
pverify) the input to the tallying phase. See below for details. Afterwards, the
scheduler triggers all the dishonest voters.

Scheduling the tallying phase. The scheduler runs the scheduling procedure of
the given MPC protocol.

Authentication Server AS. The authentication server AS, when triggered by
the scheduler S in the key generation phase for the signature scheme, runs the
key generation algorithm KeyGen of S to obtain a verification/signing key pair
(verifyAS, signAS). Then, the authentication server sends the verification key to
the bulletin board B.

When the authentication server AS receives a ballot bi from an eligible voter
Vi via an authenticated channel, the server checks whether (i) the received ballot
is tagged with the correct election identifier, (ii) the voter id belongs to the
authenticated voter and has not been used before, (iii) the ciphertext ci has not
been submitted before, and (iv) the NIZKPs are correct. If this holds true, then
the authentication server AS is supposed to respond with an acknowledgement
consisting of a signature under signAS on the ballot bi; otherwise, it does not
output anything. The authentication server adds bi together with the voter id to
the (initially empty) list of ballots b. If a voter tried to re-vote and AS already
sent out an acknowledgement, then AS returns the old acknowledgement only
and does not take into account the new vote.

When the authentication server is triggered by the scheduler S at the end of
the voting phase, AS signs the list b with signAS, and sends it, together with the
signature, to the bulletin board.

Furthermore, in order to model the assumption that the channel from the
voter to AS is authenticated but not (necessarily) secret, the authentication
server AS is also supposed to provide all ballots collected so far to any requesting
agent (even before AS published them on the bulletin board B).

Bulletin Board B. Running its honest program, the bulletin board B accepts
messages from all agents. If the bulletin board B receives a message via an au-

thenticated channel, it stores the message in a list along with the identifier of the
agent who posted the message. Otherwise, if the message is sent anonymously, it
only stores the message. On request, the bulletin board sends its stored content
to the requesting agent.

Voter Vi. A voter Vi, when triggered by the scheduler S in the voting phase,
picks chi from C according to the probability distribution µ. A choice may be
either a distinct value abstain, which expresses abstention from voting, or an
integer vector from {0, . . . , nvpc}noption . If chi = abstain, then the voter program
stops. Otherwise, if chi = (mi,1, . . . ,mi,noption) ∈ ({0, . . . , nvpc}noption ∩C), the voter
enters chi to her voter supporting device VSDi. The voter expects a message from
VSDi indicating that a ballot bi is ready for submission. After that, the voter
decides (with a certain probability paudit) whether she wants to audit or to submit
the ballot bi.

If Vi decides to submit bi, she enters a message to her VSD indicating submis-
sion. The voter expects to get back an acknowledgement from the authentication
server AS via VSDi. After that, the voter enters the acknowledgement to her ver-
ification device VVDi which checks its correctness. If the voter did not obtain
an acknowledgement or if VVDi reports that the obtained acknowledgement is
invalid, the voter posts a complaint on the bulletin board via her authenticated
channel. Note that the program of the voter may not get any response from
VSDi in case AS or VSDi are dishonest. To enable the voter in this case to post
a complaint on the bulletin board, the scheduler triggers the voter again (still
in the voting phase).

If Vi decides to audit bi, she enters a message to her VSD indicating auditing.
The voter expects to get back a list of random coins from VSDi. After that,
the voter enters her choice chi, the ballot bi, and the list of random coins to
her verification device VVDi which checks its correctness. If VVDi returns that
verification was not successful, then the voter posts a complaint on the bulletin
board via her authenticated channel. In any case, the voter program goes back
to the start of the voting phase.

The voter Vi, when triggered by the scheduler S in the verification phase,
carries out the following steps with probability pverify. If chi was abstain, the voter
verifies that her id is not listed in the list of ballots b output by the authentication
server. She files a complaint if this is not the case. If chi 6= abstain, the voter
checks that her id and her ballot bi appear in the list of ballots b, output by the
authentication server. As before, she files a complaint if this is not the case.

Voter supporting device VSDi. If the voter supporting device obtains chi =
(mi,1, . . . ,mi,noption) ∈ ({0, . . . , nvpc}noption ∩ C) from Vi, then VSDi encrypts each
integer mi,j under the public key pk to obtain a ciphertext ci,j . Afterwards,
the voter creates a NIZKP πEnc of knowledge and correctness for the noption-ary
relation over the plaintext space which holds true if and only if (m1, . . . ,mnoption) ∈
C \ {abstain}. The voter supporting device VSDi stores all the random coins it
has used for encrypting the vote and for creating the NIZKP. After that, VSDi

creates the ballot

bi =
(
idi, (ci,1, . . . , ci,noption), π

Enc
i

)
,

and returns a message to Vi indicating that her ballot bi is ready for submission.
The VSD expects a message from the voter which either indicates submission

or auditing. If the voter wants to submit bi, then VSDi sends bi to the authenti-
cation server AS. VSDi expects to get back an acknowledgement (a signature of
AS on the submitted ballot) which it returns to Vi. If the voter wants to audit
bi, then VSDi returns all the random coins that it used to create bi and removes
them from its internal storage afterwards.

Voter verification device VVDi. If the voter verification device VVDi gets
as input a choice chi, a ballot bi, and a list of random coins, then VVDi verifies
whether chi together with these random coins yield bi. After that, VVDi returns
the result of this check.

If the voter verification device VVDi gets as input an acknowledgement and
a ballot bi from Vi, it checks whether the acknowledgement is valid for bi (i.e.,
that the acknowledgement is a valid signature by AS for bi). After that, VVDi

returns the result of this check.

Trustee Tk. A trustee Tk, when triggered by the scheduler S in the key gener-
ation phase for the signature scheme, runs the key generation algorithm KeyGen
of S to obtain a verification/signing key pair (verifyk, signk). Then, the trustee
sends the verification key to the bulletin board B.

When triggered by the scheduler S in the key generation phase for the encryp-
tion scheme, the trustee Tk runs the key share generation algorithm KeyShareGen
of E to obtain a secret key share skk and a public key share pkk. Then, the trustee

Tk creates a NIZKP πKeyShareGen
k for proving correctness of the public key share

pkk including knowledge of an adequate secret key share skk. The trustee signs

(pkk, π
KeyShareGen
k) with the signing key signk and sends it, together with signa-

ture, to the bulletin board B.
When triggered by the scheduler S in the tallying phase, the trustee Tk reads

the list of ballots b published and signed by the authentication server AS from
the bulletin board B. If no such list exists or if the signature is not correct or if
the list is not correct (see above), the trustee aborts. Otherwise, Tk calculates

cunsorted ←

(∑
i

chi,1, . . . ,
∑
i

chi,noption

)
,

where
∑
i chi,j encrypts the total number of valid votes for candidate j. Up to

this step, Ordinos is completely identical to Helios.
Then, the trustees run the MPC protocol PMPC with the input cunsorted. The

output of PMPC is the overall election result of Ordinos, plus some NIZKP of
correct evaluation πMPC.

Judge J. We assume that J is honest. We note that the honest program π̂J of
J, as defined below, uses only publicly available information, and therefore every
party, including the voters as well as external observers, can run the judging
procedure.

The program π̂J, whenever triggered by the scheduler S, reads data from
the bulletin board and verifies its correctness, including correctness of posted

complaints. The judge outputs verdicts (as described below) on a distinct tape.
More precisely, the judge outputs verdict in the following situations:

(J1) If a party a deviates from the protocol specification in an obvious way, then
J blames a individually by outputting the verdict dis(a). This is the case
if the party a, for example, (i) does not publish data when expected, or
(ii) publishes data which is not in the expected format, or (iii) publishes a
NIZKP which is not correct, etc.

(J2) If a voter Vi posts an authenticated complaint in the voting phase that she
has not received a valid acknowledgement from the authentication server AS,
then the judge outputs the verdict dis(Vi)∨dis(VSDi)∨dis(AS), which means
that (the judge believes that) one of the parties Vi, VSDi, AS is dishonest
but cannot determine which of them.

(J3) If a voter Vi posts an authenticated complaint claiming that she did not
vote, but her name was posted by the authentication server AS in one of the
ballots in b, the judge outputs the verdict dis(AS) ∨ dis(Vi).

(J4) If, in the verification phase, a valid complaint is posted containing an ac-
knowledgement of AS, i.e., the complaint contains a signature of AS on a
ballot which is not in the list of ballots b published by AS, then the judge
blames AS individually by outputting the verdict dis(AS).

(J5) During the execution of PMPC the judge runs the judging procedure JMPC of
PMPC. If JMPC outputs a verdict, then J also outputs this verdict.

(J6) If, in the submission phase, a voter Vi posts an authenticated complaint
claiming that her VSDi did not produce a correct ballot bi for her chosen
input, then the judge outputs the verdict dis(Vi) ∨ dis(VSDi), which means
that (the judge believes that) either Vi or VSDi is dishonest but cannot
determine which of them.

If none of these situations occur, the judge J outputs accept on a distinct
tape.

F Formal Definition of Goal γ(k, ϕ)

In this section, we formally define the goal γ(k, ϕ) which we have described on
a high level in Section 4.1.

Goal γ(k, ϕ). In order to define the number of manipulated votes, we consider
a specific distance function d. In order to define d, we first define a function
fcount : C∗ → NC which, for a vector (ch1, . . . , chl) ∈ C∗ (representing a multiset
of voters’ choices), counts how many times each choice occurs in this vector.
For example, fcount(B,C,C) assigns 1 to B, 2 to C, and 0 to all the remaining
choices. Now, for two vectors of choices c0, c1, the distance function d is defined
by

d(c0, c1) =
∑
ch∈C

|fcount(c0)[ch]− fcount(c1)[ch]| .

For example, d((B,C,C), (A,C,C,C)) = 3.

Now, let fres : C∗ → {0, 1}∗ be a result function, and, for a given protocol run
r, let (chi)i∈Ihonest be the vector of choices made by the honest voters Ihonest in
r.26 Then, the goal γ(k, ϕ) is satisfied in r (i.e., r belongs to γ(k, ϕ)) if either (a)
the trust assumption ϕ does not hold true in r, or (b) ϕ holds true in r and there
exist valid choices (ch′i)i∈Idishonest (representing possible choices of the dishonest
voters Idishonest in r) and choices creal = (chreal

i)i≤nvoters such that:

(i) an election result is published in r and this result is equal to fres(creal), and
(ii) d(cideal, creal) ≤ k,

where cideal consists of the actual choices (chi)i∈Ihonest made by the honest voters
(recall the notion of actual choices from Section 3) and the possible choices
(ch′i)i∈Idishonest made by the dishonest voters.

We note that for Ordinos we consider tallying functions ftally which work on
aggregated votes, i.e., vectors encoding for each choice/candidate the number
of votes for this choice. That is, we consider result functions fres of the form
fres(c) = ftally(fcount(c)).

G Secure Multiparty Computation

An MPC protocol is run among a set of trustees T1, . . . ,Tntrustees in order to
evaluate a given function fMPC over secret inputs. Some of these trustees may be
corrupted by the adversary A. We are interested in the case that the adversary is
allowed to let the corrupted parties actively deviate from their honest protocol
specification, i.e., that corrupted trustees can run arbitrary ppt programs. Such
adversaries are called malicious (in contrast to the weaker notion of honest-but-
curious or passive adversaries). We assume that, before a protocol run starts, the
set of corrupted parties is already determined and does not change throughout
the run. Such adversaries are called static (in contrast to the stronger notion of
dynamic adversaries).

In this section, we specify the security properties for the protocols that can be
used in Ordinos. We can model each MPC protocol in the formal protocol model
presented in Section 3. More precisely, each protocol PMPC is run among the set
of trustees, a scheduler SMPC, a bulletin board BMPC and a judge JMPC. The roles
of the latter parties are the same as for the voting protocol, in particular, they
are all assumed honest (recall Section 3).

Typically, PMPC is split into a setup or offline protocol in which the trustees
generate key material, special randomness, etc., and a computing or online pro-
tocol in which the trustees secretly evaluate fMPC over some secret inputs. In
what follows, we are only interested in the online protocol and assume that the
offline protocol has been executed honestly.

On a high level, the input to the (online) protocol consists of a vector of
plaintexts (m1, . . . ,mm), each of which is encrypted under the public key pk of

26 Recall that the set of honest/dishonest parties is determined at the beginning of
each protocol run.

a (t, ntrustees)-threshold public-key encryption scheme E . Each trustee Tk holds a
secret key share skk relating to the public key pk. If at least t trustees are honest,
the (correct) output of is fMPC(m1, . . . ,mm), where fMPC is the given function
to be secretly evaluated.

In what follows, we precisely define the security properties, privacy and in-
dividual accountability, that PMPC is supposed to guarantee so that Ordinos
provides privacy and accountability (Theorem 6 and 2).

G.1 Privacy

On a high level, an MPC protocol provides privacy if the adversary only learns
the outcome of the MPC protocol but nothing else if he corrupts less than t
trustees. We formally define this idea with an ideal MPC protocol as follows. We
say that PMPC provides ideal privacy if it realizes the ideal MPC functionality
IMPC = IMPC(E , fMPC) (Fig. 4), in the usual sense of universal composability
[18, 43], i.e., there exists an adversarial program S (the simulator) such that
for all programs E (the environment), it holds that E|PMPC and E|S|IMPC are
indistinguishable.27

G.2 Individual Accountability

We require that if the real outcome of PMPC does not correspond to its input,
then PMPC provides evidence to individually blame (at least) one misbehaving
trustee Tk. More precisely, we require that the protocol PMPC provides individual
accountability for the goal γMPC(ϕ), where the trust assumption is

ϕ = hon(SMPC) ∧ hon(BMPC) ∧ hon(JMPC),

and goal γMPC(ϕ) is the goal γ(0, ϕ) w.r.t. the input plaintexts (m1, . . . ,mm)
to the MPC protocol (recall Section 4 for details). Formally, the accountability
property Φ of PMPC consists of the constraint

¬γMPC(ϕ)⇒ dis(T1)| . . . |dis(Tntrustees),

and accountability level 0. In other words, if the adversary tries to change the
outcome, at least one of the corrupted trustees will be identified with overwhelm-
ing probability.

H Accountability

In this section, we first recall the accountability framework and definition that
has been introduced in [45]. Then we apply this definition to analyze account-
ability of Ordinos.

27 Here we use the security notion of strong simulatability, which has been shown in [48]
to be equivalent to the security notion of universal composability, which involves a
real adversary instead of just the simulator.

IMPC(E , fMPC)

Parameters:

– A (t, ntrustees)-threshold public-key encryption
scheme E = (KeyShareGen,PublicKeyGen,Enc,
DecShare,Dec)

– Function fMPC : {0, 1}∗ → {0, 1}∗
– Number of honest trustees nhonest

trustees

– K ← ∅ (initially)

On (getKeyShare, k) from S do:

1. If k /∈ {1, . . . , nhonest
trustees}, return ⊥.

2. (pkk, skk)← KeyShareGen
3. K ← K ∪ {k}
4. Store skk and return pkk to S

On (setKeyShare, k, sk) from S do:

1. If k /∈ {nhonest
trustees + 1, . . . , ntrustees}, return ⊥.

2. Store skk ← sk
3. K ← K ∪ {k}
4. Return success

On (compute, b, c1, . . . , cm) from S do:

1. If b = 0, return ⊥.
2. ∀i ∈ {1, . . . ,m}:

(a) ∀k ∈ K : deci,k ← DecShare(ci, skk)
(b) mi ← Dec(deci,1, . . . , deci,ntrustees)
(c) If mi = ⊥, return ⊥.

3. Return res← fMPC(m1, . . . ,mm) to S.

Fig. 4: Ideal MPC protocol.

H.1 Accountability Framework

To specify accountability in a fine-grained way, the notions of verdicts, con-
straints and accountability properties are used.

Verdicts. A verdict can be output by the judge (on a dedicated output channel)
and states which parties are to be blamed (that is, which ones, according to the
judge, have misbehaved). In the simplest case, a verdict can state that a specific
party misbehaved (behaved dishonestly). Such an atomic verdict is denoted by
dis(a) (or ¬hon(a)). It is also useful to state more fine grained or weaker verdicts,
such as “a or b misbehaved”. Therefore, in the general case, we will consider
verdicts which are boolean combinations of atomic verdicts.

More formally, given a run r of a protocol P (i.e., a run of some instance
π̂P‖πA of P), we say that a verdict ψ is true in r, if and only if the formula ψ

evaluates to true with the proposition dis(a) set to false if party a is honest in
r, i.e., party a runs π̂a in r and has not been (statically) corrupted in r. For the
following, recall that the instance π̂P‖πA is part of the description of r. By this,
we can talk about sets of runs of different instances.

In fact, in our formal analysis of Ordinos, we use in some cases verdicts of the
form dis(Vi)∨ dis(AS) stating that either the i-th voter Vi or the authentication
server AS misbehaved (but the verdict leaves open, as it might not be clear,
which one of them).

Accountability constraints. Who should be blamed in which situation is
expressed by a set of accountability constraints. Intuitively, for each undesired
situation, e.g., when the goal γ(k, ϕ) is not met in a run of POrdinos, we would
like to describe who to blame.

More formally, an accountability constraint is a tuple (α,ψ1, . . . , ψk), written
(α ⇒ ψ1 | · · · | ψk), where α is a property of P (recall that, formally, this is a
set of runs of P) and ψ1, . . . , ψk are verdicts. Such a constraint covers a run r if
r ∈ α. Intuitively, in a constraint Γ = (α⇒ ψ1 | · · · | ψk) the set α contains runs
in which some desired goal of the protocol is not met (due to the misbehavior of
some protocol participant). The formulas ψ1, . . . , ψk are the possible (minimal)
verdicts that are supposed to be stated by J in such a case; J is free to state
stronger verdicts. Formally, for a run r, J ensures Γ in r, if either r /∈ α or J
states a verdict ψ in r that implies one of the verdicts ψ1, . . . , ψk (in the sense
of propositional logic).

Accountability property. A set Φ of accountability constraints for a protocol
P is called an accountability property of P. An accountability property Φ should
be defined in such a way that it covers all relevant cases in which a desired goal is
not met, i.e., whenever some desired goal of P is not satisfied in a given run r due
to some misbehavior of some protocol participant, then there exists a constraint
in Φ which covers r. In particular, in this case the judge is required to state a
verdict.

Notation. Let P be a protocol with the set of agents Σ and an accountability
property Φ of P. Let π be an instance of P and J ∈ Σ be an agent of P. We write
Pr[π(`) 7→ ¬(J : Φ)] to denote the probability that π, with security parameter 1`,
produces a run such that J does not ensure Γ in this run for some Γ ∈ Φ.

Definition 3 (Accountability). Let P be a protocol with the set of agents Σ.
Let δ ∈ [0, 1] be the tolerance, J ∈ Σ be the judge, and Φ be an accountability
property of P. Then, the protocol P is (Φ, δ)-accountable w.r.t. the judge J if
for all adversaries πA and π = (π̂P‖πA), the probability Pr[π(`) 7→ ¬(J : Φ)] is
δ-bounded as a function of `.

Similarly to the verifiability definition, we also require that the judge J is com-
putationally fair in P, i.e., for all instances π of P, the judge J states false verdicts
only with negligible probability. For brevity of presentation, this is omitted here
(see [45] for details). This condition is typically easy to check. In particular, it
is easy to check that the judging procedure for Ordinos does not blame honest
parties.

Individual accountability. In practice, so-called individual accountability is
highly desirable in order to deter parties from misbehaving. Formally, (α ⇒
ψ1 | · · · | ψk) provides individual accountability if for every i ∈ {1, . . . , k} there
exists a party a such that ψi implies dis(a). In other words, each ψ1, . . . , ψk
determines at least one misbehaving party.

H.2 Accountability of Ordinos

We are now able to precisely analyze the accountability level provided by Or-
dinos. For this, we first define the accountability constraints and property of
Ordinos. Then, we state and prove the accountability theorem.

Accountability constraints. In the case of Ordinos, we have the following
accountability constraints.

Let χi denote the set of runs of an instance of POrdinos where voter Vi com-
plains that she did not get a receipt from AS via VSDi. In such runs, the judge
cannot be sure who to blame individually (Vi, VSDi, or AS?). But he does know
that at least one of them is dishonest (recall the discussion in Section 2). This
is captured by the accountability constraint χi ⇒ dis(Vi) ∨ dis(VSDi) ∨ dis(AS).
Recall that we say that the judge J ensures this constraint in a run r, if r 6∈ χi
or the verdict output by the J in r implies dis(Vi) ∨ dis(VSDi) ∨ dis(AS) in the
sense of propositional logic.

Let χ′i contain all runs of POrdinos where the voter Vi complains that she did
not vote but her name is contained in a ballot in b published by AS. Then, the
accountability constraint for this situation is χ′i ⇒ dis(Vi) ∨ dis(AS).

Let χ′′i contain all runs of POrdinos where the voter Vi complains that the
ballot auditing was not successful. Then, the accountability constraint for this
situation is χ′′i ⇒ dis(Vi) ∨ dis(VSDi).

The accountability theorem for Ordinos (see below) states that if the adver-
sary breaks the goal γ(k, ϕ) in a run of POrdinos but neither χi, χ

′
i nor χ′′i occur

(for some voter Vi), then (at least) one misbehaving party can be blamed in-
dividually (with a certain probability). The accountability constraint for this
situation is

¬γ(k, ϕ) ∧ ¬χ⇒ dis(AS)|dis(T1)| . . . |dis(Tntrustees),

where χ =
⋃
i∈{1,...,nvoters}(χi ∪χ

′
i ∪χ′′i). Now, the judge J ensures this constraint

in a run r if r 6∈ ¬γ(k, ϕ) ∧ ¬χ or the verdict output by J in r implies dis(a) for
some party a mentioned in the constraint.

Accountability property. For POrdinos and the goal γ(k, ϕ), we define the
accountability property Φk to consist of the constraints mentioned above for
the cases χi, χ

′
i, χ

′′
i (for all i ∈ {1, . . . , nvoters}), and ¬γ(k, ϕ) ∧ ¬χ. Clearly,

this accountability property covers ¬γ(k, ϕ) by construction, i.e., if γ(k, ϕ) is
not satisfied, these constraints require the judge J to blame some party. Note
that in the runs covered by the last constraint of Φk all verdicts are atomic.
This means that Φk requires that except for the cases where χ occurs, whenever

the goal γ(k, ϕ) is violated, an individual party is blamed, so-called individual
accountability. This is due to the NIZKPs and signatures used in Ordinos.

For the accountability theorem, we make the same assumptions (V1) to (V3)
as for the verifiability theorem (see Section 4), with the following refinement.
Since, in general, verifiability does not imply accountability, we need to assume
the MPC protocol not only provides verifiability but also accountability. Hence,
we refine the verifiability assumption (V3) (Section 4) as follows so that Ordinos
guarantees accountability.

(V3) The MPC protocol PMPC enjoys individual accountability (w.r.t. the goal
γ(0, ϕ) and accountability level 0), meaning that if the outcome of the protocol
does not correspond to ftally, then at least one of the trustees can always be
blamed individually, because in this case the NIZKP πMPC mentioned in Section 2
fails. (Our instantiation presented in Section 7 fulfills this assumption.)

Now, the following theorem states the accountability result of Ordinos.

Theorem 6 (Accountability). Under the assumptions (V1) to (V3) stated
above and the mentioned judging procedure run by the judge J, POrdinos(nvoters, ntrustees, µ, pverify, paudit, ftally)
is (Φk, δk(pverify, paudit))-accountable w.r.t. the judge J where

δk(pverify, paudit) = max (1− pverify, 1− paudit)d
k+1
2 e .

The full proof is provided Appendix H.3.

H.3 Accountability Proof

In this section, we prove the accountability result for Ordinos (Theorem 6) which,
as described in Section 4, implies the verifiability result (Theorem 1).

Recall that, in order to prove Theorem 6, we need to prove that the judging
procedure in Ordinos is fair and complete.

Lemma 1 (Fairness). Under the assumptions (V1) to (V3) stated in Section 4
and the mentioned judging procedure run by the judge J, the judge J is compu-
tationally fair in POrdinos(nvoters, ntrustees, µ, pverify, paudit, ftally).

Proving fairness follows immediately from the correctness of the encryption
scheme, the signature scheme, the MPC protocol, and all the NIZKPs invoked.

Lemma 2 (Completeness). Under the assumptions (V1) to (V3) stated in
Section 4 and the mentioned judging procedure run by the judge J, for the voting
protocol POrdinos(nvoters, ntrustees, µ, pverify, paudit, ftally) we have that

Pr[π(1`) 7→ ¬(J : Φk)] ≤ δk(pverify, paudit)

with overwhelming probability as a function of `.

Proof. In order to prove the lemma, we have to show that the probabilities

Pr[π(1`) 7→ (χi ∧ ¬dis(Vi) ∧ ¬dis(VSDi) ∧ ¬dis(AS))]

Pr[π(1`) 7→ (χ′i ∧ ¬dis(Vi) ∧ ¬dis(AS))]

Pr[π(1`) 7→ (χ′′i ∧ ¬dis(Vi) ∧ ¬dis(VSDi))]

Pr[π(1`) 7→ (¬γ(k, ϕ) ∧ ¬χ ∧ ¬dis(AS)∧
¬dis(T1) ∧ . . . ∧ ¬dis(Tntrustees))]

are δk(pverify, paudit)-bounded for every i ∈ {1, . . . , nvoters}.
By the definition of the honest programs (in particular, of the judge J, of the

bulletin board B, of the voter Vi and of her VSDi), the first three probabilities are
equal to 0. Hence, to complete the proof, we need to show that the probability
of the event

X = ¬γ(k, ϕ) ∧ ¬χ ∧ ¬IB

is δk(pverify, paudit)-bounded as a function of `, where

IB = dis(AS) ∨ dis(T1) ∨ . . . ∨ dis(Tntrustees).

In other words, ¬IB describes the event that none of the trustees T or the au-
thentication server AS is individually blamed by the judge J.

Let us first consider the case that an election outcome res is announced. This
implies that all NIZKPs that are supposed to be published have in fact been
published.

Now, if ¬IB holds true, then all NIZKPs πKeyShareGen
k published by the trustees

Tk are valid. Thus, by the computational completeness of the NIZKPs, it follows
that for all k ∈ {1, . . . , ntrustees} the published public key share pkk is valid, i.e.,
there exists a secret key share skk such that (pkk, skk) is a valid public/secret
key pair.

Furthermore, if ¬IB holds true, then for all ballots bi ∈ b published by AS
the NIZKPs πEnc

i are valid (which are supposed to prove that each voter Vi
votes for exactly one possible choice). Thus, by the computational completeness
of the NIZKPs, it follows that for all bi ∈ b containing a ciphertext vector
(ci,1, . . . , ci,noption), there exist plaintexts mreal

i,1 , . . . ,m
real
i,noption

such that ci,j encrypts

mreal
i,j under pk for all j ∈ {1, . . . , noption} and that (mreal

i,1 , . . . ,m
real
i,noption

) ∈ C holds

true (recall that C ⊆ {0, . . . , nvpc}noption is the set of possible choices).
Since we have assumed that the MPC protocol PMPC provides individual ac-

countability for the goal γMPC(ϕ), it follows that if ¬IB holds true, then the over-
all NIZKP πMPC of the MPC protocol, which has been run among the trustees,
is valid. Recall that the goal γMPC(ϕ) contains all runs in which for the input to
PMPC, which equals to

Enc

(
nballots∑
i=1

mreal
i,1

)
, . . . ,Enc

(
nballots∑
i=1

mreal
i,noption

)

in this case, it is guaranteed that the output

ftally

(
nballots∑
i=1

mreal
i,1 , . . . ,

nballots∑
i=1

mreal
i,noption

)
of PMPC, and hence of POrdinos, is correct (with overwhelming probability as a
function of `).

Let ch1, . . . , chnhonest
voters

be the actual choices made by the honest voters. Now,
if the goal γ(k, ϕ) is not met, then ϕ holds true so that, in particular, the
bulletin board B is honest. Thus, for all possible valid ch′1, . . . , ch′ndishonest

voters
made by

the dishonest voters, we have that the distance d, as measured in Section 4.1,
between (ch1, . . . , chnhonest

voters
, ch′1, . . . , ch′ndishonest

voters
) and (chreal

1 , . . . , chreal
nballots

) is at least
k + 1.

The honest choices (ch1, . . . , chnhonest
voters

) are the input to the respective VSDs

supposed to be submitted, whereas (chreal
1 , . . . , chreal

nballots
) is encrypted in the list

of ballots published by the authentication server AS. Since the goal γ(k, ϕ) is
not met, we can conclude that at least dk+1

2 e honest inputs were manipulated
after being submitted to the respective VSD and before being homomorphically
aggregated. This can either be because the respective VSD or the authentication
server AS manipulated/dropped these honest voters’ choices. Now, under the
assumption that all honest voters perform their verification/auditing procedure
independently from each other, the probability that none of the betrayed honest
voters complains is bounded by δk(pverify, paudit). Thus, we can conclude that the
probability of the event X is δk(pverify, paudit)-bounded as a function of `.

In the case that no election outcome res is announced, the judging procedure
(J1) ensures that the authentication server AS or one of the trustees Tk are
individually blamed.

I Ideal Privacy

In this section, we first describe the general formula for the ideal privacy level
for arbitrary result functions. Then, we give some more examples to illustrate
the effect of hiding the tally on the ideal privacy level. Finally, we prove that
the derived formula is indeed ideal.

I.1 Formula for Ideal Privacy

We now describe the formula δideal
nvoters,nhonest

voters ,µ
(fres) for which Theorem 3 states that

this level is indeed ideal. More precisely, we will show that the ideal voting
protocol as presented in Figure 5 achieves δideal

nvoters,nhonest
voters ,µ

(fres)-privacy and this

privacy level is ideal, namely there exists no δ < δideal
nvoters,nhonest

voters ,µ
(fres) such that the

ideal protocol achieves δ-privacy.
Recall that privacy is defined w.r.t. an honest voter, called the voter under

observation, for which the adversary has to decide whether this voter voted for
ch or ch′, for any choices ch0 and ch1.

Ivoting(fres, µ, nvoters, n
honest
voters)

Parameters:

– Function fres : {0, 1}∗ → {0, 1}∗
– Probability distribution µ over C
– Number of voters nvoters

– Number of honest voters nhonest
voters

– I ← ∅ (initially)

On (init, honest) from S do:

1. ∀i ∈ {1, . . . , nhonest
voters }: store chi ←µ C

2. I ← I ∪ {1, . . . , nhonest
voters }

3. Return success

On (setChoice, i, ch) from S do:

1. If i /∈ {nhonest
voters + 1, . . . , nvoters}, return ⊥.

2. If ch /∈ C, return ⊥.
3. Store chi ← ch
4. I ← I ∪ {i}
5. Return success

On (compute, b) from S do:

1. If b = 0, return ⊥.
2. Return res← fres((chi)i∈I)

Fig. 5: Ideal privacy functionality for voting protocol.

Let Ai,Rres denote the probability that the choices made by the honest voters
yield the output res of the result function fres (e.g., only the winner of the elec-
tion or some ranking of the candidates), given that the voter under observation
picks choice i ∈ C and the dishonest voters vote according the choice vector
R = (chi)i∈Idishonest . (Clearly, Ai,Rres depends on µ. However, we omit this in the
notation.) Furthermore, let Air denote the probability that the choices made by
the honest voters yield the choice vector r = (chi)i∈Ihonest given that the voter
under observation chooses choice i. (Again, Air depends on µ, which we omit in
the notation.) In what follows, we write r + R to denote a vector of integers
indicating the number of votes each choice in C got according to r and R.

It is easy to see that

Ai,Rres =
∑

r : fres(r+R)=res

Air

and

Air =
n!

r1! · · · rnoption !
· pr11 . . . p

rnoption

k · ri
pi

where (p1, . . . pnoption) is the probability distribution of the honest voters on the
possible choices C defined by µ, where now we simply enumerate all choices and
set C = {1, . . . , noption}.

Moreover, let M∗j,j′,R = {res : Aj,Rres ≤ Aj
′,R

res }. Now, the intuition behind the

definition of δideal
nvoters,nhonest

voters ,µ
(fres) is as follows: If the observer, given an output res,

wants to decide whether the observed voter voted for choice j or j′, the best
strategy of the observer is to opt for j′ if res ∈ M∗j,j′,R, i.e., the output is more
likely if the voter voted for candidate j′. This leads to the following definition:

δidealnvoters,nhonest
voters ,µ

(fres) (1)

= max
j,j′∈{1,...,noption}

max
R

∑
res∈M∗

j,j′,R

(Aj
′,R

res −Aj,Rres) (2)

I.2 Further Examples

In this section, we give some more examples that illustrate the impact of different
tally-hiding result functions on the level of privacy.

1. Revealing the complete result can lead to much worse privacy. In Figure 6,
we consider two candidates (where clearly δidealwin = δidealrank). If one candidate
has a bigger probability, this candidate will win regardless of the vote of the
voter under observation. Hence, there is no chance for telling the two choices
of the voter under observation apart.

2. The balancing attack. Figure 7 shows that dishonest voters could be used to
cancel out the advantage of tally-hiding functions in terms of the privacy of
single voters.

3. Sometimes ranking is not better than the complete result. If the candidates
are distributed uniformly, we have δidealwin < δidealcomplete = δidealrank . This is illustrated
in Figure 8.

0

0.2

0.4

0.6

0.8

1

1 5 10 15 20 50

number of honest voters (without the observed voter)

p
ri

va
cy

le
v
el

(δ
)

fcomplete

fwin

Fig. 6: Level of privacy (δ) for the ideal protocol with two candidates and no
dishonest voters. Probability for abstention: 0.3, p1 = 0.1, p2 = 0.6.

0

0.1

0.2

0.3

0.4

0.5

0 15 20 25 30 50
number of dishonest voters

p
ri

va
cy

le
v
el

(δ
)

fcomplete

fwin

Fig. 7: Level of privacy (δ) for the ideal protocol with two candidates and n = 100
honest voters. Probability for abstention: 0.3, p1 = 0.1, p2 = 0.6

0

0.2

0.4

0.6

0.8

1

1 5 10 15 20 50

number of honest voters (without the observed voter)

p
ri

va
cy

le
v
el

(δ
)

fcomplete = frank
fwin

Fig. 8: Level of privacy (δ) for the ideal protocol with 5 candidates and a uniform
distribution on the candidates.

I.3 Proof of Theorem 3

Our goal is to prove that Ivoting(ftally, nvoters, nhonestvoters , µ) achieves δ-privacy where
δ = δideal

nvoters,nhonest
voters ,µ

(fres). We begin with some auxiliary definitions and facts.

For a protocol instantiation P ∗, we denote by Ω = Cn
honest
voters the set of all pos-

sible combinations of choices made by the honest voters with the corresponding
probability distribution µ. All other random bits used by ITMs in an instance
of P ∗, i.e., all other random bits used by dishonest voters as well as all random
bits used by honest authorities, the observer, and the voter under observation,
are uniformly distributed. We take µ′ to be this distribution over the space Ω′

of random bits. Formally, this distribution depends on the security parameter.
We can, however, safely ignore it in the notation without causing confusion. We
define Ω∗ = Ω×Ω′ and µ∗ = µ×µ′, i.e., µ∗ is the product distribution obtained
from µ and µ′.

For an event ϕ, we will write Prω,ω′←Ω∗ [ϕ], Prω,ω′ [ϕ], or simply Pr[ϕ] to de-
note the probability µ∗{(ω, ω′) ∈ Ω∗ : ϕ(ω, ω∗)}). Similarly, Prω←Ω [ϕ], or simply
Prω[ϕ] will stand for µ({ω ∈ Ω : ϕ(ω)}); analogously for Prω′←Ω′ [ϕ].

Let

∆R
ij =

∑
res∈M∗i,j,R

(Aj,Ares −Ai,Rres). (3)

So, we have

δidealnvoters,nhonest
voters ,µ

(fres) = max
R

max
i,j∈{1,...,noption}

∆R
ij .

By res(ω, i), where ω ∈ Ω and i ∈ {1, . . . , noption}, we denote the result of the
election (which indicates, for every possible choice, the number of votes for that
choice) obtained when the honest voters vote according to ω and the voter under
observation votes for i. Therefore, we have

Ai,Rres = Prω[fres(res(ω, i) +R) = res].

By definition of M∗i,jR, it is easy to see that for every i, j ∈ {1, . . . , noption} and
every subset M of possible outputs of the election, the following inequality holds:∑

res∈M

(
Aj,Rres −Ai,Rres

)
≤

∑
res∈M∗i,j,R

(
Aj,Rres −Ai,Rres

)
= ∆R

ij . (4)

Let πo be an arbitrary observer process and M be the set of views accepted
by πo. Note that the view of the observer in a run of the system consists only
of his random coins ω′ ∈ Ω′ and the output of the election. Therefore, each
element of M can be represented as (ω′, res), where ω′ ∈ Ω′ and res is is the
election output.

Let R(ω′) denote the result produced by the dishonest voters. For ω′ ∈ Ω′,
we define Mω′ to be {res : (ω′, res) ∈M}. With this, we obtain:

Pr[(πo ‖ π̂V(j) ‖ e)(`) 7→ 1]− Pr[(πo ‖ π̂V(i) ‖ e)(`) 7→ 1]

=Pr[(ω′, fres(res(ω, j) +R(ω′))) ∈M]−
Pr[(ω′, fres(res(ω, i) +R(ω′))) ∈M]

=
∑
ω′∈Ω′

µ′(ω′)Prω[(ω′, fres(res(ω, j) +R(ω′))) ∈M]−

µ′(ω′)Prω[(ω′, fres(res(ω, i) +R(ω′))) ∈M]

=
∑
ω′∈Ω′

(
µ′(ω′) · Prω[fres(res(ω, j) +R(ω′)) ∈Mω′]−

µ′(ω′) · Prω[fres(res(ω, i) +R(ω′)) ∈Mω′]
)

=
∑
ω′∈Ω′

µ′(ω′)
∑

res∈Mω′

(
Prω[fres(res(ω, j) +R(ω′)) = res]−

Prω[fres(res(ω, i) +R(ω′)) = res]
)

=
∑
ω′∈Ω′

µ′(ω′) ·
∑

res∈Mω′

(
Aj,R(ω′)

res −Ai,R(ω′)
res

)
(by (4))

≤
∑
ω′∈Ω′

µ′(ω′) ·
∑

r∈M∗
i,j,R(ω′)

(
Aj,R(ω′)

res −Ai,R(ω′)
res

)
(by (3))

=
∑
ω′∈Ω′

µ′(ω′) ·∆R(ω′)
i,j

≤
∑
ω′∈Ω′

µ′(ω′) ·max
R

∆R
i,j

= max
R

∆R
i,j

≤ max
i,j∈{1,...,noption}

max
R

∆R
i,j = δidealnvoters,nhonest

voters ,µ
(fres).

This implies that

Pr[(c ‖ π̂V(j) ‖ e)(`) 7→ 1]− Pr[(c ‖ π̂V(i) ‖ e)(`) 7→ 1]

is δ-bounded, for δ = δideal
nvoters,nhonest

voters ,µ
(fres).

It remains to show that δ is optimal. As in the above inequalities, we max-
imize (R, i and j) over finite sets, there is an observer program πo = π∗o such
that ∣∣∣Pr[(πo ‖ π̂V(j) ‖ e)(`) 7→ 1]− Pr[(πo ‖ π̂V(i) ‖ e)(`) 7→ 1]

∣∣∣
equals δ, and therefore S does not achieve δ′-privacy, for any δ′ < δ.

(This π∗o chooses the votes R for the dishonest voters in an optimal way and,
for i, j, accepts a run only if the output res in his view belongs to M∗i,j,R and for

i, j such that ∆R
i,j = maxl,l′∈{1,...,noption}∆

R
l,l′ .)

J Privacy Proof

In this section, we prove Theorem 2 which establishes the privacy level of Ordinos which
can be expressed using the privacy level δideal

nvoters,nhonest
voters ,µ

(fres) of the protocol Ivoting(fres, µ, nvoters, n
honest
voters)

with ideal privacy (see Fig. 5).

Overview of the proof. Recall that, in order to prove the theorem for the protocol
Ordinos with nvoters voters, ntrustees trustees, voting distribution µ, verification
rate pverify ∈ [0, 1], and voter under observation Vobs, we have to show that

|Pr[(π̂Vobs
(ch0)‖π∗) 7→ 1]− Pr[(π̂Vobs

(ch1)‖π∗) 7→ 1]|

is δideal
(nvoters,nhonest

voters−k,µ)
(fres)-bounded as a function of the security parameter `, for

all ch0, ch1 ∈ C (ch0, ch1 6= abstain), all programs π∗ of the remaining parties
such that at least nhonestvoters voters are honest in π∗ (excluding the voter under
observation Vobs), such that at most t− 1 trustees are dishonest in π∗, and such
that the adversary (the dishonest parties in π∗) is k-risk-avoiding.

We can split up the composition π∗ in its honest and its (potentially) dis-
honest part. Let HV be the set of all honest voters (without the voter under
observation) and π̂HV be the composition of their honest programs. Recall that
the judge J, the scheduler S, the bulletin board B, the voting authority Auth, and
nhonesttrustees = ntrustees − t+ 1 out of ntrustees trustees are honest (w.l.o.g., we assume
that the first nhonesttrustees trustees are honest). Therefore, the honest part, which we
denote by

π̂H = π̂J‖π̂Auth‖π̂B‖π̂S‖π̂T1‖ . . . ‖π̂Tnhonest
trustees

‖π̂HV,

consists of the honest programs π̂J, π̂Auth, π̂B, π̂S, π̂Tk
, π̂HV of the judge J, the

voting authority Auth, the bulletin board B, the scheduler S, the trustees Tk, and
the honest voters HV, respectively. By π̂H(ch) we will denote the composition
of all honest programs including the program of the voter under observation
Vobs, i.e., π̂H(ch) = π̂H‖π̂Vobs

(ch). All remaining parties are subsumed by the
adversarial process πA. This means that we can write π̂Vobs

(ch)‖π∗ as π̂H(ch)‖πA.
Recall that, by assumption, the adversary πA is k-risk-avoiding.

In order to prove the result, we use a sequence of games. We fix ch ∈ C
and start with Game 0 which is simply the process π̂H(ch)‖πA. Step by step, we
transform Game 0 into Game 7 which is the composition π̂7

H(ch)‖πA for some
process π̂7

H(ch) and the same adversarial process πA. Game 7 will be proven
indistinguishable from Game 0 from the adversary’s point of view, which means
that ∣∣Pr[(π̂0

H(ch)‖πA) 7→ 1]− Pr[(π̂7
H(ch)‖πA) 7→ 1]

∣∣
is negligible for a fixed ch ∈ C (as a function of the security parameter). On
the other hand, it will be straightforward to show that in Game 7 for arbitrary
ch0, ch1 ∈ C \ {abstain}, the distance∣∣Pr[(π̂7

H(ch0)‖πA) 7→ 1]− Pr[(π̂7
H(ch1)‖πA) 7→ 1]

∣∣

is bounded by δideal
(nvoters,nhonest

voters−k,µ)
(fres) because π̂7

H(ch0) and π̂7
H(ch0) use the ideal

voting protocol for nhonestvoters − k honest voters. Using the triangle inequality, we
can therefore deduce that

|Pr[(π̂H(ch0)‖πA) 7→ 1]− Pr[(π̂H(ch1)‖πA) 7→ 1]|

is δideal
(nvoters,nhonest

voters−k,µ)
(fres)-bounded for all ch0, ch1 ∈ C (as a function of the security

parameter).

Game 0. In what follows, we write π̂0
H(ch) for π̂H(ch) and consider π̂0

H(ch) as
one atomic process (one program) and not as a composition of processes.28 Now,
Game 0 is the process π̂0

H(ch)‖πA. 4
In the next step, the scheduler S modifies the CRSs for the NIZKPs used by

the dishonest trustees for proving knowledge and correctness of the key shares
in such a way that he can later extract all of these secret key shares.

Game 1. For Game 1, we modify π̂0
H(ch) in the following way to obtain π̂1

H(ch).
Apart from the modifications below, π̂0

H(ch) and π̂1
H(ch) are identical.

Modified CRSs for πKeyShareGen
k . Instead of using the (honest) setup algorithm

to generate common reference strings σKeyShareGen
k for NIZKPs of knowledge and

correctness of the secret key shares skk corresponding to the published public key
shares pkk of the dishonest trustees, the modified scheduler (as a subprocess of
π̂1
H(ch)) uses (the first component of) an extractor algorithm (that exists by the

computational knowledge extraction property) to generate σKeyShareGen
k (which is

given to the adversary) along with a trapdoor τKeyShareGenk . 4
In the next step, the scheduler S modifies the CRSs for the NIZKPs used by

the honest trustees for proving knowledge and correctness of the key shares in
such a way that he can later simulate these NIZKPs without actually knowing
the secret key shares.

Game 2. For Game 2, we modify π̂1
H(ch) in the following way to obtain π̂2

H(ch).
Apart from the modifications below, π̂1

H(ch) and π̂2
H(ch) are identical.

Modified CRSs for πKeyShareGen
k . Instead of using the (honest) setup algorithm

to generate common reference strings σKeyShareGen
k for NIZKPs of knowledge and

correctness of the secret key shares skk corresponding to the published public
key shares pkk of the honest trustees, the modified scheduler (as a subprocess of
π̂1
H(ch)) uses (the first component of) an extractor algorithm (that exists by the

computational knowledge extraction property) to generate σKeyShareGen
k (which is

given to the adversary) along with a trapdoor τKeyShareGenk . 4
In the next step, the scheduler S modifies the CRSs for the NIZKPs used by

the dishonest voters for proving knowledge and correctness of their ballots in
such a way that he can later extract these choices.

Game 3. For Game 3, we modify π̂2
H(ch) in the following way to obtain π̂3

H(ch).
Apart from the modifications below, π̂2

H(ch) and π̂3
H(ch) are identical.

28 This is w.l.o.g. since every (sub-)process can be simulated by a single program.

Modified CRSs for πEnc
i . Instead of using the (honest) setup algorithm to gener-

ate common reference strings σEnc
i for NIZKPs of knowledge and correctness of

chi to be used by the dishonest voters Vi, the modified scheduler (as a subpro-
cess of π̂3

H(ch)) uses (the first component of) an extractor algorithm (that exists
by the computational knowledge extraction property) to generate σEnc

i (which is
given to the adversary) along with a trapdoor τEnci . 4

In the next step, the scheduler S modifies the CRSs for the NIZKPs used by
the honest voters for proving knowledge and correctness of their ballots in such
a way that he can later simulate these NIZKPs without actually knowing the
honest choices.

Game 4. For Game 4, we modify π̂3
H(ch) in the following way to obtain π̂4

H(ch).
Apart from the modifications below, π̂3

H(ch) and π̂4
H(ch) are identical.

Modified CRSs for πEnc
i . Instead of using the (honest) setup algorithm to gen-

erate common reference strings σEnc
i for NIZKPs of knowledge and correctness

of chi to be used by the honest voters Vi, the modified scheduler (as a sub-
process of π̂3

H(ch)) uses a simulator algorithm (that exists by the computational
zero-knowledge property) to generate σEnc

i along with a trapdoor τEnci . 4
In the next step, we exploit the fact that the adversary is k-risk-avoiding

which means that the adversary does not manipulate or drop more than k honest
votes unless the voting protocol aborts before the final result is published. For
Ordinos, this leads to the situation that the adversary can only manipulate or
drop honest votes before the tallying has started because the tallying procedure
itself provides perfect verifiability.

Game 5. For Game 5, we modify π̂4
H(ch) in the following way to obtain π̂5

H(ch).
Apart from the modifications below, π̂4

H(ch) and π̂5
H(ch) are identical.

The process π̂5
H(ch) halts if there are less than nhonestvoters −k ballots submitted by

the honest voters in the list of ballots being output by the authentication server
AS. In this case, π̂5

H(ch) halts if it is triggered the first time after the ballots have
been published. 4

In the next step, we will exploit the fact that the MPC protocol in Ordinos pro-
vides privacy so that the honest part of the voting protocol can “internally” re-
place the real MPC protocol with the ideal one and simulate it towards the adver-
sary. In order to do this, the ideal MPC protocol requires the secret key shares
of the dishonest trustees which can be extracted from the dishonest trustees’
NIZKPs with the trapdoors that have been introduced in Game 1. Furthermore,
the ideal MPC protocol does not reveal the secret key shares of the honest
trustees so that the simulator has to simulate their NIZKPs without knowing
the secret key shares. This can be done with the trapdoors introduced in Game
2.

Game 6. For Game 6, we modify π̂5
H(ch) in the following way to obtain π̂6

H(ch).
Apart from the modifications below, π̂5

H(ch) and π̂6
H(ch) are identical.

Simulating key generation. Each time, an honest trustee Tk is triggered to
generate its key shares (pk, sk), the simulator does the following. Instead of
letting Tk run KeyShareGen, the simulator invokes the ideal MPC protocol IMPC

for generating the public/secret key shares (pkk, skk) and outputting the public

key share pk (recall that the secret key share sk is not revealed by IMPC). Then,

the simulator uses the trapdoor τKeyShareGenk from Game 2 to generate a simulated

NIZKP πKeyShareGen
k (without actually knowing the secret key share skk).

Extracting dishonest key shares. After the authentication server has published
the list of ballots, the simulator uses the trapdoors τKeyShareGenk from Game 1 to
extract the secret key shares skk of the dishonest trustees Tk. The simulator
forwards these secret key shares to the ideal MPC protocol IMPC.

Secure tallying. The simulator simulates the computing phase of the real
MPC protocol PMPC with the ideal MPC protocol IMPC. 4

In the next and final step, the complete Ordinos protocol will be replaced by
the ideal voting protocol. In order to do this, the ideal voting protocol requires
the choices of the dishonest voters which can be extracted from the dishonest
voters’ NIZKPs with the trapdoors that have been introduced in Game 3. Fur-
thermore, the ideal voting protocol does not reveal the choices of the honest
voters so that the simulator has to simulate their NIZKPs without knowing the
choices. This can be done with the trapdoors introduced in Game 4.

Game 7. For Game 7, we modify π̂6
H(ch) in the following way to obtain π̂7

H(ch).
Apart from the modifications below, π̂6

H(ch) and π̂7
H(ch) are identical.

Simulating ballot generation. Each time, an honest voter Vi (including the
voter under observation) is triggered to pick chi according to µ and create her
ballot bi, the simulator does the following. The simulator sets chi = 0noption and
encrypts it to obtain ci. Then, the simulator uses the trapdoor τEnci from Game
4 to generate a simulated NIZKP πEnc

i .
Extracting dishonest choices. After the authentication server has published

the list of ballots, the simulator uses the trapdoors τEnci from Game 1 to extract
chi of each published ballot bi that belongs to a dishonest voter Vi.

Secure tallying. The simulator replaces the ideal MPC protocol IMPC with
the ideal voting protocol Ivoting(fres, µ, nvoters, n

honest
voters − k′) where the nhonestvoters − k′

is the number of ballots submitted in the list of ballots being output by the
authentication server AS. By Ivoting(fres, µ, nvoters, n

honest
voters −k′)(ch), we denote the

protocol Ivoting(fres, µ, nvoters, n
honest
voters − k′) in which the choice nhonestvoters − k′ + 1 is

set as ch. Now, the simulator first triggers Ivoting(fres, µ, nvoters, n
honest
voters −k′)(ch) in

order to (internally) determine the choices of the nhonestvoters −k′ honest votes. Then,
the simulator triggers Ivoting(fres, µ, nvoters, n

honest
voters−k′)(ch) to set the choices of the

dishonest voters as extracted above. The output of Ivoting(fres, µ, nvoters, n
honest
voters −

k′)(ch) will be the output of the tallying phase. 4

Lemma 3. For all i ∈ {0, 1, 2, 3}, Game i and Game i+ 1 are computationally
indistinguishable, i.e., we have that∣∣Pr[(π̂iH(ch)‖πA) 7→ 1]− Pr[(π̂i+1

H (ch)‖πA) 7→ 1]
∣∣

is negligible (as a function of the security parameter).

Proof. This follows from the fact that πKeyShareGen and πEnc are proofs of knowl-
edge (recall Section C for details).

Lemma 4. For all i ∈ {1, 2, 3, 4}, the adversary is k-risk-avoiding in Game i
(meaning that with overwhelming probability a run of the protocol does not stop
before the final result is published and there are at least nhonestvoters − k choices by
honest voters in the final result).

Proof. If the adversary was not k-risk-avoiding in Game i + 1 for some i ∈
{0, 1, 2, 3}, it would be possible to construct a ppt algorithm that distinguishes
between Game i and Game i+ 1. This would contradict the previous Lemma.

Lemma 5. The probability that in a run of the process π̂4
H(ch)‖πA, there are at

least nhonestvoters − k ciphertexts associated to the honest voters in the input of the
tallying phase is overwhelming.

Proof. Assume that less than nhonestvoters − k ciphertexts associated to the honest
voters were in the input of the MPC protocol in Game 4. Due to the correctness
of the MPC protocol, the output of the MPC protocol would be different from
any election result in which at most k honest choices have been manipulated.
This contradicts the fact that the adversary is k-risk-avoiding in Game 4, as we
have seen in the previous Lemma.

Lemma 6. Game 4 and Game 5 are computationally indistinguishable, i.e., we
have that ∣∣Pr[(π̂4

H(ch)‖πA) 7→ 1]− Pr[(π̂5
H(ch)‖πA) 7→ 1]

∣∣
is negligible (as a function of the security parameter).

Proof. Recall that Game 5 halts if there are less than nhonestvoters −k ballots submitted
by the honest voters in the list of ballots being output by the authentication
server AS. Since this probability is negligible, as we have seen in the previous
Lemma, Game 4 and Game 5 are indistinguishable.

Lemma 7. Game 5 and Game 6 are computationally indistinguishable, i.e., we
have that ∣∣Pr[(π̂5

H(ch)‖πA) 7→ 1]− Pr[(π̂6
H(ch)‖πA) 7→ 1]

∣∣
is negligible (as a function of the security parameter).

Proof. This follows from the fact that πKeyShareGen is a proof of knowledge and
that PMPC realizes the ideal MPC protocol IMPC.

Lemma 8. Game 6 and Game 7 are perfectly indistinguishable, i.e., we have
that ∣∣Pr[(π̂6

H(ch)‖πA) 7→ 1]− Pr[(π̂7
H(ch)‖πA) 7→ 1]

∣∣
is negligible (as a function of the security parameter).

Proof. This follows from the fact that πEnc is a proof of knowledge and that the
remaining difference between Game 6 and Game 7 is purely syntactical.

K Instantiation

In this section, we elaborate on the accountability and privacy of our instantia-
tion of Ordinos.

Accountability of our Instantiation of Ordinos. Our instantiations of Pgt
MPC

and Peq
MPC provide individual accountability, i.e., everyone can tell whether a

trustee misbehaved, mainly due to the NIZKPs employed. More precisely, in
Pgt
MPC and Peq

MPC, the trustees only exchange shared decryptions (of some interme-
diate ciphertexts) each of which is equipped with a NIZKP of correct decryption.
Hence, the output of the MPC protocols can only be false if one of the shared
decryptions is false, and in this case, the responsible trustee can be identified.
This implies that our protocol PMPC provides individual accountability w.r.t. the
goal γ(0, ϕ) and accountability tolerance 0 up to the point where crank is com-
puted (with ϕ = hon(S) ∧ hon(J) ∧ hon(B) as before). In the second phase of
PMPC, again Pgt

MPC and Peq
MPC are used as well as distributed verifiable decryption

(which anyway is part of Pgt
MPC and Peq

MPC). This phase therefore also provides
individual accountability w.r.t. the goal γ(0, ϕ) and accountability tolerance 0.
Altogether, we obtain the following theorem.

Theorem 7 (Accountability). Let ϕ = hon(S) ∧ hon(J) ∧ hon(B). Then, the
protocol PMPC, as defined in Section 7, provides individual accountability for the
goal γ(0, ϕ) and accountability level 0.

With this, assumption (V3) for Theorem 6 is satisfied. Since the distributed
Paillier public-key encryption scheme is correct, the signature scheme S is EUF-
CMA-secure, and the proof πEnc is a NIZKP, also assumption (V1) is satisfied.
With the judge J defined analogously to the one of the generic Ordinos sys-
tem, we can therefore conclude that our instantiation enjoys the same level of
accountability level as the generic Ordinos system.

Corollary 3 (Accountability). The instantiation of POrdinos(nvoters, ntrustees, µ, pverify, fOrdinos)
as described above provides (Φk, δk(pverify))-accountability w.r.t. the judge J where

we have δk(pverify) = (1− pverify)d
k+1
2 e.

Privacy of our Instantiation of Ordinos. In this paragraph, we show that
the tallying phase of our instantiation of Ordinos, as presented in Section 7,
provides privacy. More precisely, for all specific tally-hiding result functions that
we have defined in Section 7, we have to show that the tallying phase provides
the same privacy level as an ideal MPC protocol that takes as input the number
of votes per candidates cunsorted and outputs the respective result, e.g., only
the winner(s). In other words, we need to argue that the tallying phase does
not leak more information about (the plaintexts in) cunsorted than what can be
derived from its final outcome. Recall that we assume that the MPC protocols
Peq
MPC and Pgt

MPC provide the same privacy levels as the respective ideal MPC
protocols for equality and greater-than testing.

In the first part of the tallying phase (with input cunsorted and output crank),
merely Peq

MPC and Pgt
MPC are applied to cunsorted so that we can replace them with

their respective ideal MPC protocols and simulate them accordingly towards
the adversary. The output crank encrypts the overall position of each candidate
in the final ranking. Hence, we can conclude that the first part provides the
same privacy level as an ideal MPC protocol that takes as input the (encrypted)
number of votes per candidate and outputs the (encrypted) overall candidate
ranking and be simulated towards the adversary accordingly.

In the second part of the tallying phase (with input crank), the specific tally-
hiding result function is evaluated. Again, depending on the specific function, we
use Peq

MPC or Pgt
MPC and also verifiable decryption in the form of a standard NIZKP

πDec. Now, for all tally-hiding result functions that are defined in Section 7,
it is easy to see that the outcome of the second part reveals exactly what is
required by the respective result function. Taking this together with the fact
that Peq

MPC and Pgt
MPC provide ideal privacy, and that πDec can be simulated (see,

e.g., Section J for details), we can conclude that the second part also provides
ideal privacy for each such result function.

Finally, we can conclude that for all instantiations defined in Section 7, the
complete tallying phase provides ideal privacy.

L Comparison to Canard et al.

3 candidates 5 candidates

voters [17] Ordinos [17] Ordinos

210 − 1 4.26 0.26 (16 bit) 9.53 1.27 (16 bit)

210 − 1 4.26 0.30 (32 bit) 9.53 1.35 (32 bit)

220 − 1 8.53 0.30 (32 bit) 19.05 1.36 (32 bit)

Table 1: Comparison to [17] (three trustees, time in minutes).

In Table 1, we briefly compare the performance of our implementation with
theirs, using the only available benchmarks published in [17], where the tallying
is done on a single machine, i.e., all trustees run on a “single computer with
physical CPU cores (i5-4300U)”. For the purpose of this comparison, we run
our implementation also only on a single machine, using the same key size as
Canard et al., namely 2048 bits. However, we note again that Canard et al.
tackle a different kind of elections, making a fair comparison hard. Having said
this, as can been seen from Table 1, our implementation is 5 to 13 times faster
than the one by Canard et al. Note that the runtime difference of Ordinos for
different numbers of voters is due to different bit lengths of integers. For 210

voters we use 16-bit integers and for 220 we use 32-bit integers. Since the round
complexity of the MPC protocol [52] that is used by Canard et al. is much higher
than the one of the MPC protocol that we implemented, we conjecture that the
differences would further increase when the trustees in [17] would actually be

connected over a network. As demonstrated in Section 8, in our case a network
does in fact not cause much overhead.

	Ordinos: A Verifiable Tally-Hiding Remote E-Voting System

