On the Automatic Analysis of
Recursive Security Protocols with XOR*

Ralf Kiisters' and Tomasz Truderung?

! ETH Zurich
ralf.kuesters@inf.ethz.ch
2 University of Kiel, Wroctaw University
tomasz.truderung@ii.uni.wroc.pl

Abstract. In many security protocols, such as group protocols, princi-
pals have to perform iterative or recursive computations. We call such
protocols recursive protocols. Recently, first results on the decidability
of the security of such protocols have been obtained. While recursive
protocols often employ operators with algebraic, security relevant prop-
erties, such as the exclusive OR (XOR), the existing decision procedures,
however, cannot deal with such operators and their properties. In this
paper, we show that the security of recursive protocols with XOR is de-
cidable (w.r.t. a bounded number of sessions) for a class of protocols in
which recursive computations of principals are modeled by certain Horn
theories. Interestingly, this result can be obtained by a reduction to the
case without XOR. We also show that relaxing certain assumptions of
our model lead to undecidability.

1 Introduction

In group protocols and other classes of security protocols a protocol step per-
formed by a principal (i.e., receiving a message and then sending a message)
typically involves recursive or iterative computation. We will refer to such pro-
tocols by recursive protocols, in contrast to non-recursive protocols where the
computation performed in one protocol step is simple and does not require
recursion. Many, in fact, most of the recursive protocols proposed in the lit-
erature employ operators, such as Diffie-Hellman exponentiation and exclusive
OR (XOR), which have algebraic, security relevant properties (see, e.g., [11,12,
7]). The present work is concerned with the automatic security analysis of such
protocols. While recently first results on the decidability of the security (more
precisely, the secrecy property) of recursive protocols have been obtained [8,9,
14], these results do not take into account operators with algebraic properties
(see also the related work).

The attacks on recursive protocols presented in the literature illustrate that
dealing with algebraic properties of operators is security relevant (see, e.g., [11,
12,7]). One example is the Recursive Authentication (RA) protocol proposed by
Bull and Otway [1]. In this protocol, a key distribution server receives a list of

* An extended abstract of this work appears in STACS 2007.

(arbitrary many) requests of pairs of principals who want to establish session
keys among them. The server processes this list iteratively, generates the session
keys, and then distributes them. In [10], Paulson proved that the RA protocol
is secure under the assumption that session keys are distributed using (ideally)
secure encryption. However, Ryan and Schneider [12] showed that there is an
attack on the protocol if XOR is used to distribute keys, which in fact was the
original proposition by Bull and Otway: In the attack by Ryan and Schneider,
the adversary is given one session key generated by the server and using this key
he can obtain all other session keys by chaining messages via XOR.

CONTRIBUTION OF THIS WORK. In this paper, we extend the model for recur-
sive protocols proposed in [14], henceforth called the Horn theory model, by
adding XOR (along with its algebraic properties). In the Horn theory model,
recursive/iterative computations performed by principals in one protocol step
are modeled by certain Horn theories, hence the name. While in models for non-
recursive protocols XOR can be added without losing decidability of security
(w.r.t. a bounded number of sessions) [2, 6]—security even remains NP-complete
just as in the case without XOR, [2]—for recursive protocols things are more in-
volved. We show that a naive extension of the Horn theory model by XOR leads
to undecidability of security. (As a byproduct we also obtain undecidability in
case complex keys are used in the Horn theory model, a fact that has not been
observed before.) More precisely, we obtain undecidability in case principals may
conjoin arbitrary messages received from the network by XOR. Conversely, we
show decidability in case principals may only conjoin a fixed message, i.e., a
message that does not depend on messages received from the network, with a
message that depends on messages received from the network. We call protocols
which only contain such principals @-linear. From a practical point of view, &®-
linear protocols are sufficient in many cases, e.g., for the RA protocol and other
protocols [12,2,7]. We emphasize that we do not constrain the intruder in its
ability to conjoin messages by XOR.

The technique used to obtained decidability is very different to the one in
[14]. In fact, the main part of our proof is to reduce the security problem in the
Horn theory model with XOR, to the one without XOR. More precisely, we first
prove certain properties of attacks involving XOR. Based on these properties
we then reduce the security problem to the case without XOR, which by [14] is
decidable. In the reduction we use the ability of principals to perform recursive
computations in order to mimic applications of the XOR operator.

FURTHER RELATED WORK. For non-recursive protocols decidability of security
(w.r.t. a bounded number of sessions) was shown for several operators with al-
gebraic properties, e.g., XOR [2, 6], Diffie-Hellman Exponentiation [3,13], and
commuting public-key encryption [4]. However, the models employed in these
works cannot handle recursive computations of principals, such as the compu-
tation of the server in the RA protocol. The techniques differ as well: Due to
the absence of recursive computations, the reduction technique developed in the
present work is not applicable in these models. Conversely, the techniques for

bounding the size of attacks and the constraint solving techniques employed in
[2,6,3,13,4] cannot immediately be applied to recursive protocols.

In [8,9], transducers were used to model recursive computations of princi-
pals. The expressivity of these transducer-based models is orthogonal to the
Horn theory model: While the transducer-based models allow to output mes-
sages of complex structure, in the Horn theory model only lists (or sets) of
messages of a more simple structure can be produced. The main disadvantage of
the transducer-based model is that, unlike the Horn theory model, messages can-
not be tested for equality without losing decidability. This, as already observed
in [9], immediately implies that security is undecidable in the transducer-based
model with XOR (or Diffie-Hellman exponentiation) since these operators allow
for (implicit) equality tests between arbitrary messages. In the transducer-based
model, even one equality test (or alternatively, one application of the XOR op-
erator) suffices for the undecidability.

Horn theories have also been used for the automatic analysis of non-recursive
protocols (see, e.g., [5,15] and references therein). The results and techniques
employed in these works are very different to the ones presented here: The main
goal of these works, which also consider operators with algebraic properties,
is automatic protocol analysis w.r.t. an unbounded number of sessions, where,
however, the intruder knowledge is over-approximated.

STRUCTURE OF THE PAPER. In the following section, we present our protocol
and intruder model, with an example presented in Section 3. The undecidability
and decidability results are stated in Section 4 and 5, respectively. We conclude
in Section 6. The appendix provides further details and proofs.

2 The Protocol and Intruder Model

In this section, we introduce our protocol and intruder model, including mes-
sages, principals, protocols, and attacks, along the lines of [14] where, unlike the
model in [14], here messages may contain the exclusive OR (XOR).

HORN THEORIES. Let X' be a finite signature, V be a set of variables, and 7
denote the set of terms over X and V. Ground terms are terms without variables.
Substitutions are defined as usual. The application of a substitution o to a term
t is denoted by to. Substitutions are defined on sets of terms and atoms (see
below) in the obvious way. For a unary predicate ¢ and a (ground) term t € 7
we call ¢(t) a (ground) atom. For a set S of terms we write ¢(S) for the set
{q(s) | s € S} of atoms. Let ~ be a congruence relation over 7. We write
q(t) ~ ¢{t')if ¢ = ¢ and t ~ t'. A (unary) Horn theory T is a finite set of
Horn clauses of the form ay, ..., a, = ag with atoms a; for every i. Given a set
of ground atoms A and a ground atom a, we say that a can be derived from A
w.r.t. T (written A b a) if there exists a derivation for a from A using T, i.e.,

there exists a sequence by, ..., b; of ground atoms such that b; ~ a and for every
i€ {l,...,1} we either have b; € A or there exists a substitution ¢ and a Horn
clause ay,...,a, = ao in T such that apo ~ b; and for every j € {1,...,n}

there exists k € {1,...,i— 1} with ajo ~ by.

MESSAGES. Let A be a finite set of constants (also called atomic messages),
such as principal names, nonces, and keys, and let K be a subset of A (the set
of keys). We assume that 0,Sec € A and that there is a bijection -~ on K
which maps every public (private) key k to its corresponding private (public)
key k=1. Let X 4 (or simply X) be a finite signature consisting of all constants
from A, the unary function symbol hash(-) (hashing), and the following binary
function symbols: (-,-) (pairing), {-}. (symmetric encryption), {-}. (public key
encryption), and & (exclusive OR).
The set of terms over X and V is defined by the following grammar:

T w= A|V | hash(T) | (T,T) | {T}e [{The | TOT.

Note that we assume atomic keys, i.e., keys used to encrypt messages are required
to be constants. We denote by Var(t) the set of variables occurring in t.

Ground terms, i.e., terms without variables are called messages. To model
the algebraic properties of XOR, we consider the congruence relation ~ on 7
induced by the following equational theory:

rPyYy=yox
(c@y ®e=1®(y®2)

r®x =0

r®0==z

For example, we have that a®b® {0}, ©b®{c @ c},, ~ a. (Due to the associativity
of @ we often omit brackets and simply write a ® b @ ¢ instead of (a ® b) @ ¢ or
a®(bdc).)

PRINCIPALS AND PROTOCOLS. A protocol step consists of a protocol rule and a
send program. A protocol rule is of the form ¢ — ¢(s) where t,s € 7 and ¢ is
some unary predicate symbol. A send program & is a unary Horn theory where
every Horn clause is of one of the following forms:

q)= q"(z) with z € Var(t), (1)
q"(s) = I(s") with Var(s') C Var(s), (2)

where ¢', ¢", ¢""" are arbitrary (not necessarily different) unary predicate symbols,
t is a linear term (i.e., every variable in ¢ occurs at most once) which does not
contain the symbol @ and I is a distinguished unary predicate symbol, which
will model the network, and hence, the intruder; the terms s and s’ may be
non-linear and may contain ¢. Intuitively, clauses of the form (1), called push
clauses, allow a principal to recursively traverse a term from top to bottom
(e.g., process a list). Clauses of the form (2), called send clauses, are used by a
principal to perform checks on messages (by matching them against s) and to
output messages on the network, as will be clearer from the following definition:
For a ground atom ¢(m), we define the set of terms sent using ¢ by

la(m)]e = {m’ : g(m) Fo I(m/)}.

Now, the intuition behind a protocol step which consists of a protocol rule
t — ¢(s) and a send program @ is that a principal, after having received a term
t0, for some ground substitution 6, sends all the terms from the set [¢(s0)]s on
the network, i.e., to the intruder, by running the send program .

The decidability result in [14] in the Horn theory model without XOR works
if t in (1) is flat, i.e., is of the form ¢t = f(z1,...,x,) where the variables xz; are
not required to be different. We could also allow such terms in (1). However,
(complex) linear terms are better suited for modeling protocols. It is easy to see
that linear terms in (1) can be turned into flat form by using auxiliary predicate
symbols.

A principal II is a finite edge-labeled tree where every edge is labeled by a
protocol step. If the protocol rule of a protocol step is of the form ¢ — ¢(s), we
require that every variable occurring in s also occurs in ¢ or the left-hand side of a
protocol rule preceding ¢t — ¢(s) in the tree IT. We also assume, w.l.o.g., that the
set of predicates used in send programs of different protocol steps are pairwise
disjoint, except that I may be used in all of the send programs. The intuition
is that if a principal waits at a node of the tree and receives a message, then
she can apply one of the protocol steps whose left-hand side (i.e., the left-hand
side of the corresponding protocol rule) matches with the incoming message, and
after having run the corresponding send program, moves to the next node.

For a principal II we call a sequence 7 of protocol steps a run of IT if 7 is
a sequence of protocol steps obtained when traversing I7 from the root to some
node of IT (not necessarily a leaf).

A protocol P is a tuple (II4,...,IT;) of principals IT;. We assume, w.l.o.g.,
that the set of variables of protocol rules of different principals are disjoint.

ATTACK. The intruder is the standard Dolev-Yao intruder extended by the abil-
ity to apply the XOR operator [6,2]. Formally, the intruder is modeled by the
following Horn theory Ty where k € K and z,y € V, x # y:

I(x), I(y) = I({z,y)) I(x),I(k) = I({z}) I({x}y) 1(k) = I(x)
I((z,y)) = I(z) I(@), I(k) = I({z},) I({aby), I(k7Y) = I(2)
I((z,y)) = I(y) I(x) = I(hash(z)) I(z), I(y) = I(z ©y)

Given a protocol P = (IIy,...,1IT}), a protocol execution scheme of P is a
sequence of protocol steps m = my,...,m, such that each m; can be assigned to
one of the principals I1y,..., II; and such that, for every 4, the subsequence of

elements of 7 assigned to II; is a run of II;, i.e., 7 is an interleaving of runs of
the H,L

Now, an attack on P is a pair (m,0) where 7 = ((t; — ¢i(s:),P;)), is a
protocol execution scheme of P and 6 is a ground substitution of the variables
in Var({t1,s1,...,tn,Sn}) such that

1(0), I([q1(510)] @), - - -, I ([gi—1(si—10)]a) Fry I(t:0), fori=1,....n (3)
I(O)J([[ql(819)]]¢)7--~7 ([an(5n8)]@) b1 1(Sec) (4)

where @ = U?:l @, (recall that different send programs use disjoint sets of pred-
icates, except that they all may use I). Condition (3) says that in every step
of the protocol execution the intruder is able to derive the message expected
by the respective principal and (4) says that at the end he is able to derive the
secret Sec. Note that, w.l.o.g., initially the intruder only knows the constant 0:
One can define a designated principal that expects to receive 0 and in return
outputs messages the intruder is allowed to know, e.g., public keys. A proto-
col is called insecure if there exists an attack on it. Let ATTACKgenerat = {P |
P is an insecure protocol} denote the corresponding decision problem.

3 An Example Protocol

To illustrate our model, we present a formal description of the Recursive Au-
thentication (RA) Protocol [1]. In what follows, we abbreviate messages of
the form (mg,...,{(mMy—_1,Mmy)---) by mg,...,m, and messages of the form
(m, hash({k,m))), i.e., a message m along with a keyed hash on m, by hash(m).

The key distribution server S of the RA protocol shares a long-term (sym-
metric) key with every principal and performs only one (recursive) protocol step
in a protocol run. In this protocol step, S receives an a priori unbounded se-
quence of requests of pairs of principals who want to obtain session keys for
secure communication and then generates so-called certificates which contain
the session keys. An example of the kind of message S receives is

hashg, (07 S, N, hashg, (Ba C, Ny, hashg, (A7 B, N, _))) (5>

where N., Ny, and N, are nonces generated by C, B, and A, respectively, and
K., Ky, and K, are the long-term keys shared between the server S and the prin-
cipals C, B, and A, respectively. Recall that, for instance, hashg, (4, B, Ny, —)
stands for the message ((A, (B, (N4, —))), hash((Kq, (A, (B, (Ng, —)))))). Mes-
sage (5) consists of three requests and indicates that C' wants to share a session
key with S, B with C, and A with B. The constant “—” marks the end of the
sequence of requests. We emphasize that messages sent to S may contain an
arbitrary number of requests—which must be processed by S recursively. Now,
given message (5), S processes the requests starting from the outermost. First, S
generates two certificates for C, namely, (C, S, K., ®hashg_(N.),{C,S, N.}k..)
and (C, B, Ky @ hashg_(N¢),{C, B, N.}k,.) (from these certificates C' can eas-
ily deduce K.s and Kj. and check whether the encrypted messages have the
expected form). In the same way, certificates for B and A are generated, where
A only obtains one certificate (containing the session key for communication
with B).

Formally, the protocol step performed by S is as follows, where we assume
that Py, ..., P, are the principals that may participate in the RA protocol, with
P, =S, and every P;, i < n, shares a long-term key K; with S: The protocol
rule of S is simply « — ¢(x) and the send program consists of the following Horn

clauses, where j < n and 7,7’ < n:

a({(z1, (22, (x3, 24))), w5)) = q(24)
q(hashg, (P, Pj,x,—)) = I(M; ;)
q(hashg, (P;, Pj,z,hashg,, (P, Pi, x1,22))) = I(M ;)
q(hashg, (P;, Pj,x,hashg, (Py, Py, x1,12))) = I(M; ;)

where Mi,j = <R, Pj, Kij @hashKi (I’), {Pl, Pj, I}K”> and Mi/,i/ = <P27 Py, Kz/l@
hashg, (z), {P;, Pir, 2} k,,,). The server would also check whether the first request
is addressed to it. This can easily be captured by using another predicate; how-
ever, for simplicity of presentation this is not modeled here. The model of the
principals Py, ..., P,_1 of the RA protocol is rather standard as they do not need
to perform recursive computations. We therefore omit their formal specification
here.

4 Undecidability of the General Case

We prove the following theorem:

Theorem 1. The problem ATTACKgeneral 45 undecidable.

Proof. The proof is by reduction from Post Correspondence Problem (PCP): An

instance Z of PCP is a non-empty sequence (u1,v1), ..., (tun, v,) of pairs of words
ui,v; € A* over a finite alphabet A. A solution of Z is a non-empty sequence
i1,...,4 with ¢; € {1,...,n} such that w;, ---u;, = v;, ---v;,.

To encode Z, let Az = AU{L,1,...,n,k,—} denote the set of atomic mes-
sages that we use. For a word u € A% and a term ¢ over Az, we define ¢ - u
inductively by t-u =t if u=¢ and t-u = (¢,a) - v with v = av for some a € Az
and v € A7.

A solution of Z is encoded by what we call a solution sequence of Z. A
solution sequence of T is a sequence tg, ..., t; of messages using constants in Az
where to = (L, 1), t; = (m,m) for some message m over Az, and for every i €
{0,...,1—1},if t; = (m,m/), then ;41 = (m-u;,m’ -v;) for some j € {1,...,n}.
It is easy to see that a PCP instance Z has a solution iff there is a solution
sequence for 7.

Given 7, we reduce checking whether Z has a solution to checking whether
there exists an attack on the protocol Pz: Pz consists of one principal only and
this principal performs only one protocol step where the protocol rule of this step
is simply 2 — ¢(z) and the idea behind the send program is that it expects to
receive a solution sequence (to, (t1, ..., (t;—1, (t;,—))---))) and does the follow-
ing, where — marks the end of the sequence and M; = (¢;,..., {t;—1, {t;,—)))
(see Appendix A for the formal definition of the send program):

1. If to = (L, L), then {My}, is sent to the intruder.
2. For every i € {0,...,1 — 1}, if ¢; is of the form (z,y) and ¢,4; is of the form

(x-uj,y-v;) for some j € {1,...,n}, then {M;}, ® {M;;1}, is sent to the

intruder.

3. If t; is of the form (z,x), then {M;}, ® Sec is sent to the intruder.

Now, it is easy to see that if the intruder is able to send a solution sequence to
the principal (which is the case if such a sequence exists), then by chaining all
messages received from the principal via XOR, the intruder obtains Sec. Con-
versely, if the intruder cannot send a solution sequence (since no such sequence
exists), he will not obtain Sec since at least one “link” in the chain will be miss-
ing. a

A similar reduction as the one presented above also works if XOR is replaced
by symmetric encryption where keys may be arbitrary messages (complex keys).
Hence, we also obtain the following theorem, where ATTACK comprey is the secu-
rity problem in our model with complex keys (and without XOR).

Theorem 2. The problem ATTACK compkey 15 undecidable.

5 Decidability of @-linear Protocols

In the proof of undecidability (Theorem 1) we used that a principal may conjoin
two messages by XOR where both messages may depend on messages received
from the network. In @-linear protocols, defined next, this is forbidden. In this
section, we show that the existence of attacks can be decided for @-linear pro-
tocols.

A protocol P is ®-linear if for each subterm of the form ¢ @ s occurring in P
(both in protocol rules and in send programs), ¢ or s is ground. For example, if the
term (z@®a)®y with a € A, z,y € V occurs in P, then P is not @-linear. The RA
protocol (Section 3) is an example of an @-linear protocol; see, e.g., [2] for another
example. Let ATTACKg_jinear = {P | P is an @-linear, insecure protocol}.

The main result of this paper is:

Theorem 3. The problem ATTACKg_jinear S decidable.

Before we provide a sketch of a proof of this theorem, we note that our result
extends the decidability results presented in [6, 2] for non-recursive protocols to
recursive protocols, in case the protocols are ®-linear and restricted to atomic
keys.

In the remainder of this section we only sketch main ideas of the proof of
Theorem 3, while the full proof is given in Appendix B.

The proof consists of two main steps: First, we prove certain properties of
derivations in the Horn theory model with XOR (Section 5.1). Based on these
properties we then reduce the security problem to the case without XOR, which
by [14] is decidable. In the reduction we use the ability of principals to perform
recursive computations in order to mimic operations involving XOR. The reduc-
tion is sketched in Section 5.2. An initial (minor) step, not further discussed in
this section, is to turn a protocol into simple form. This is used to combine all
derivations carried out in (3) and (4) into a single derivation from I(0) to I(Sec).
So, we may consider an attack as a single derivation, called attack derivation (see
Appendix B.1 for details).

1(s),1(s") — I(c) for s@s ~c (6)

I(ct),I(c)— I(t) (7)

Icot),I(d)—=I(ckpd @t) forctOandcPc #£0 (8)

I1(t),I(c) = I(c®t) 9)

I(co), I(c1 B t1)y..., I(cn Dtn) — for n > 1, where the terms (10)
I(cDt1i D Ditn) t1,...,t, are pairwise distinct

andc~co@ - Dcp

Fig. 1. ®-Rules in Modest Derivations

5.1 Good Derivations

In this section, we identify and analyze properties of attack derivations.

First, we need to introduce some notation and terminology. We call a term
standard if its top-symbol is not &; otherwise, it is called non-standard. For a
protocol P, let Sp denote the set of all the ground subterms of terms occurring
in P and let Cp be the set consisting of all terms of the form t; & --- ® ¢, with
t; € Sp modulo ~. Elements of Cp are referred to by ¢ and decorations thereof.
In what follows, non-standard terms will be written as ¢ ®t; & --- & t,, where
¢ stands for a (ground) term in Cp and ¢4, ...,t, are standard terms not in Cp.
A term is Cp-long (or just long, if Cp is known from the context) if it is of the
formc@t; @ - D ty, for n > 1. Otherwise it is called Cp-short (or just short).

We now introduce what we call modest and normal derivations and prove
properties about them.

A derivation is modest if it uses the rules depicted in Figure 1 instead of
I(z),I(y) — I(z ®y) where ¢, cg,...,c, € Cp and t,t',t,...,t, are standard
ground terms not in Cp; s and s’ are arbitrary ground terms. We observe that
in a modest derivation long terms may only be used to obtain an element of
Cp, by applying rule (6). In all other rules ((7)—(10)), only short terms may
be conjoined by XOR. However, (10), which allows to combine an unbounded
number of short terms, may produce a long term.

The next lemma states that it is enough to consider modest derivations.
Therefore, in the remainder of this section we will assume derivations to be
modest.

Lemma 1. If there exists an attack on P, then this attack can be proven by a
modest derivation.

We now introduce normal derivations. In a normal derivation, applications of
certain classes of rules are grouped into segments and segments occur in a certain
order. In this extended abstract, we will only define some aspects of normal
derivations (see the appendix for a full definition).

If b1,...,b; is a derivation, then b;, bjt1,...,b; for i < j is a subsequence of
the derivation. A segment of a derivation is a maximal subsequence which does
not contain any atom of the form I(c), for some ¢ € Cp, or any atom obtained
by a protocol rule.

Rule (8) is called variant rule. A variant segment of a derivation is a maxi-
mal subsequence of a segment containing only atoms obtained by variant rules.
Among others, a normal derivation satisfies the following conditions: (i) it does
not contain two atoms a,a’ such that a ~ a’, (ii) each segment contains at most
one variant segment, and (iii) variant rules do not use as a premise an atom
obtained from a variant rule. We can show the following:

Lemma 2. If there exists an attack on P, then there exists a modest and normal
derivation for this attack.

Because the cardinality of the set Cp is exponentially bounded w.r.t. the size of
P, the number of segments in an attack derivation is also exponentially bounded
in the size of P. Now, as a result of Lemma 2 and the definition of normal
derivations we obtain:

Lemma 3. In a modest and normal attack derivation the number of variant
segments is exponentially bounded in the size of the protocol.

We now show that the number of long terms can be bounded in attack deriva-
tions. The key is the notion of a profile of a standard term. A profile « is defined
w.r.t. an attack derivation § and consists of an element ¢ in Cp and a natural
number k. Roughly speaking, two standard ground terms satisfy the same profile
if they behave similarly w.r.t. ¢ in the k-th segment of §. In particular, if two
terms have the same profile, each of them can be used instead of the other one
when long terms are constructed by Rule (10). So, for a given derivation ¢ and
a profile a, we will fix a term % and use it whenever a term of profile « is used
to build a long term.

Ifcdti®d - D, for kK > 1, is a long term, the positions where t1,..., ¢,
occur are called unimportant. We can show the following lemma:

Lemma 4. If there exists an attack on a protocol, then there exists a normal
attack derivation & for this protocol such that whenever terms t,t of the same
profile « occur in & at unimportant positions, then t = t'.

We call derivations of the form described in Lemma 4 good. Now, from the
definition of profiles it immediately follows that the number of different profiles
is (exponentially) bounded in the size of the protocol. Together with Lemma 4
we obtain:

Corollary 1. If a term c® t; & --- @ t,, occurs in a good attack derivation,
then n is bounded exponentially in the size of the protocol. Furthermore, in a
good attack derivation for a protocol, the number of distinct terms of the form
cOt; @ Dty, for n > 1, is bounded by some (computable) number M in the
size of the protocol.

5.2 Reduction to the @-Free Case

We now show how the security problem can be reduced to the ®-free case, i.e.,
given a protocol P we construct a protocol P* which does not contain @ such

10

that there exists an attack on P (in the sense defined in Section 2) iff there exists
an attack on P* in the @-free setting. The main steps are i) to represent terms
with @ by @-free terms and ii) to mimic intruder rules involving @ in the ®-free
setting.

For i)—representing terms—we use additional constants: a new constant e
and, for each equivalence class [c]~, ¢ € Cp, a new constant denoted by [c]. Now,
for a term ¢, we obtain its @—free representation, denoted by "t by recursively
applying to each non-standard subterm of ¢ the following transformation: a sub-
term of the form ¢ @ ¢ (recall that, according to our convention, ¢ € Cp and ¢ is
a standard term not in Cp) is transformed into {t}[o> and a subterm of the form
cOt @ DBty, for n > 1, is transformed into {{t1,{..., {(tn=1,tn)}, .- .}e}e}[c].
We also substitute every ¢ € Cp by the constant [c].

Now, we turn to intruder rules involving @ and show how they can be mimiced
in the @-free setting. By the results of Section 5.1, we may assume that attack
derivations are modest, normal, and good. In particular, by Lemma 1, it suffices
to mimic rules (6) to (10):

— Rule (7) and (9): These rules can easily be mimiced by ordinary intruder
rules (decryption and encryption). Consider, for instance, rule (7): In the
original attack atoms I(c@®t) and I(c) are used to obtain I(t). Now, I("¢7)
can be derived from I("c ® ¢7) = I({"t"},) and I("c¢") = I([c]) by the
standard decryption rule.

— Rule (6): The result of this rule is of the form I(c¢) with ¢ € Cp. Because
there is a bounded number, say L, of elements in Cp, we can mimic this rule
by adding L principals to P each with a single protocol step of the form
{z} g Az} e)) = (e).

— Rule (10): The result of this rule is a long term and we know, by Corollary
1, that the number of such terms is bounded by a constant M which only
depends on the size of the protocol, so, again, we can handle this case by
adding a bounded number of principals each with a single protocol step of
the form

(ol v tier s Ayndie,) = T YL {Un—1synde et b)

— Rule (8): By Lemma 3, we know that the number of variant segments (i.e.,
blocks of atoms obtained by the variant rule) is bounded by a number N
depending only on the protocols size and that no element obtained by a
variant rule is necessary as a premise of a variant rule in the same variant
segment. Hence, each of these variant segments can be handled by a protocol
step of the following form:

z — p(2) with the following send program:
p((z,y)) = p(y)
p((z,y)) = p'()
P ({z}, [€]) = I({z}pey) forec ecCp

11

More details on the construction of P* can be found in the appendix. We can
show:

Lemma 5. For an ®-linear protocol P we have that there exists an attack on
P (in the sense of Section 2) if and only if there exists an attack on PT in the
@-free setting.

Since the security of PT is decidable [14] and P* can effectively be computed
from P, Theorem 3 follows. A more careful analysis of the complexity of our
construction reveals that the size of PT is double exponential in the size of P.
As the secrecy of PT can be decide in NEXPTIME [14], we obtain an 3-NEXPTIME
upper bound. Nonetheless, we believe that this upper bound can be reduced to
NEXPTIME by a more careful construction and a refinement of the proof in [14].

6 Conclusion

In this work, we have proved that security (w.r.t. a bounded number of sessions)
is decidable for the class of @-linear protocols. This is the first decidability result
for recursive protocols involving algebraic properties of operators. We have also
shown that relaxing certain assumptions of our model lead to undecidability of
security. Our decidability result was obtained in a modular way by first reducing
the problem of deciding security in the Horn theory model with XOR to the
one without XOR and then using the existing decidability result for the latter
model. We expect that the modular proof technique developed in this paper also
helps to deal with other operators, such as Diffie-Hellman exponentiation.

A The Send Program in the Proof of Theorem 1

The send program in the proof of Theorem 1 is defined as follows, where j ranges
over {1,...,n}:

q(((L, L), z)

q(((L; 1), 2)
q(M,

7 ((z,y)

q' (Mo,

¢ (((z,), -)

"(z) (
(L L) o)) (
({ »j}k & {MI,J}) (
"(y) (14
({MO,J}k & {Ml,J}) (
({{(z,2), =)}, © Sec) (

lllliilllllﬁ
~ o~ QL M~ ~

)
)
0,7)
)
0,)
)

with

My ; = ((x1,22), ({1 - uj, 22 - v5),¥))
My j = ({1 - uj, 2 - v5),)

It is straightforward to check that Sec can only be derived by the intruder if a
solution sequence is given as input to the send program.

12

B Proof of Theorem 3

While the key ideas of the proof of Theorem 3 were given in Section 5, now we
provide the details of the proof. First, in Section B.1, we show how to turn a
protocol into simple form. This is used to combine all derivations carried out in
(3) and (4) into a single derivation from I(0) to I(Sec). So, we may consider an
attack as a single derivation, called attack derivation. Second, in Sections B.2 and
B.3, we prove certain properties of derivations in the Horn theory model with
XOR. Based on these properties we then reduce the security problem to the case
without XOR, which by [14] is decidable. In the reduction we use the ability
of principals to perform recursive computations in order to mimic operations
involving XOR. The reduction is presented in Section B.4.

B.1 Simple Protocols

The goal of this subsection is to give a more compact and convenient character-
ization of an attack.

In the following, we write a protocol step with the protocol rule of the form
t — q1(s1),---,qn(sn) and a send program ¢ as a shortcut for the protocol
step which consists of the protocol rule ¢ — ¢o({s1,...,8n)), where ¢g is a
distinct predicate symbol, and the send program & with the additional rules
go({x1,...,xn)) — qi(x;), fori=1,... n.

Definition 1. A protocol P is simple, if both of the following condition are
satisfied:

1. Each principal has exactly one protocol step (thus a protocol can be seen
as a set of independent protocol steps).
2. Each protocol rule of R is of the form z — r(z), for some r € R.

Lemma 6. For each protocol P there exists a simple protocol P’ such that P is
secure iff P’ is. Moreover, P’ can be computed in polynomial time w.r.t. the size
of P.

Proof. First we show how to transform a principal IT into a set of independent
protocol steps (more formally, into a set of principals each of who consists of
one protocol step). We represent nodes of II by sequences of natural numbers
(elements of {0, ...,k — 1}*, where k is the maximal branching degree of IT), in
the usual way. For a node u of IT, let r,, = {x1, ... ,xn}lu, where [, is a fresh key
and x1,...,x, are the variables occurring in the protocol rules obtained when
traversing from the root of IT to u. We transform II into the following rules.

T — I({m}ku) for each inner node u of IT

{d}, , rv, t = q(s), I(ry) for each node u = vd of II, where the label of the
! edge (v, u) consists of a rule ¢ — g(s) with a send
program ¢

where, for each node u, we have a fresh key k. In the case of the latter rule, we
equip it with the original send program @. One can show that the protocol P’

13

obtained by replacing each participant II by the set of protocol steps obtained
in this way is secure if and only if P is secure.

Now, to obtain a version of the protocol which meets Item 2 of Definition
1, we replace each protocol rule t — I(s) by the rule z — ¢(x), for some fresh
predicate symbol ¢, and we add the rule ¢(t) = I(s) to the send program.
Similarly, we replace each protocol rule t — r(s), for r € Q, by rules x — g(x)
and y — p(y), where ¢, p are fresh predicate symbols, and we extend the send
program by the rules q(t) = I({s},) and p({z},) = r(2). One can show that
the protocol obtained in this way is secure if and only if P is secure.

One can also observe that the transformations described above are polyno-
mial.

Lemma 6 allows us to consider only simple protocols without loss of gener-
ality. Furthermore, if simple protocols are considered, we can reformulate the
notion of an attack in a simpler and more uniform way, as we do it below.

Let P be a simple protocol. We can assume that distinct protocol rules do
not share variables. For a ground substitution 6, we define the theory P(6):

P#) = Tg U ® U {I(z0) = q(x0) | (x — q(z)) is a protocol rule of P}.

where @ is the union of all send programs occurring in P. Now, one can see that
P is insecure if and only if there exists a substitution 6 such that

1(0) Fpg) I(Sec). (17)

In the remainder of this paper we will always assume that protocols are simple
and we will use (17) as a characterization of an attack.

B.2 Modest and Normal Derivations

Recall that we call a term standard if its top-symbol is not @; otherwise, it is
called non-standard. For a simple protocol P, let Sp denote the set containing
the term 0 and all the ground subterms of terms occurring in P, and let Cp be
the set {t1 & -- - P t, | t1,...,tn € Sp}. Like in the previous sections, elements
of Cp are referred to by ¢ and decorations thereof. Non-standard terms will be
written as c®t; @- - - Dt, where ¢ stands for a (ground) term in Cp and ¢, ..., t,
are standard terms not in Cp. Without loss of generality we will assume that
every nonstandard term c@®t; ® - - - @ t, occurring in a derivation is in a normal
form, i.e. the terms t¢1,...,t, are distinct.

For a term ¢, we define F'(¢) as follows: F(c) = F(t) = F(c®t) =0, if c € Cp
and t is a standard term not in Cp, and F(c@t; & -+ D t) = {t1,...,tn}, for
n > 1, where ¢ € Cp and tq,...,t, are standard terms not in Cp. Now, for a
term t, let G(t) be defined by the equation G(t) = |J, -, F'(t') (where < is the
subterm ordering). A term is Cp-long (or just long, if Cp is known from the
context) if it is of the form ¢ ® 1 ® --- ® t,,, for n > 1. Otherwise it is called
Cp-short (or just short). One can see that a term ¢ is long if and only if the set
F(t) is not empty.

14

If § = ay,...,a, is a derivation, then 4(¢) stands for a;. Moreover, d; stands
for ay,...,a;—1. For a derivation § of length n, let G(6) = |, G(6(7)).

Lemma 7. Assume that 0 is a derivation for (17). If 5(k) contains a term t as
a subterm, then, for each t' € F(t), there exists ¢ € Cp such that I(c®t') occurs
m 5<k.

Proof. If F(t) = 0, it is nothing to prove. So, consider the case F'(t) # (. We
proceed by induction on k. Suppose that the lemma holds true for each ¢ < k. We
will show that it holds for k. If we assume that, for some ¢ < k, a term ' ~ c®t
occurs in 6(4), then we are trivially done (note that in this case F(t) = F(t')).
Otherwise, 0(k) has to be I(t) and is obtained by the XOR rule, i.e. t ~ s @ r,
for some §(i) = I(r) and 6(j) = I(s), for i,j7 < k (it is because the protocol is
@-linear and thus only the XOR rule can introduce a term t with F'(t) # (). Let
t' € F(t). One can check that one of the following cases holds: (a) s is of the
form c®t', (b) r is of the form c® t/, (¢) t' € F(s), or (d) ¢ € F(r). If (a) or
(b) holds, we clearly have c @ t' € d<. If (c) or (d) holds, we obtain c®t' € d
by the inductive hypothesis. O

A derivation is modest if it uses the rules depicted in Figure 1 (on Page
9) instead of I(z),I(y) — I(x @ y) where ¢,cq,...,c, € Cp and t,t',t1,...,1t,
are standard ground terms not in Cp; s and s’ are arbitrary ground terms. We
observe that in a modest derivation long terms may only be used to obtain an
element of Cp, by applying rule (6). In all other rules ((7)-(10)), only short
terms may be conjoined by XOR. However, (10), which allows to combine an
unbounded number of short terms, may produce a long term.

Lemma 8. If (17) holds, for some 6, then it has a modest derivation.

Proof. Tt is enough to show how to obtain zp = I(e® fDt1 D - - Dt Dtpi1D- D
tpyr) from z; = I(e®t1 @ Dty,) and 20 = I(f D41 D Dtpy) in a modest
derivation. By Lemma 7, we have previously derived I(ci®t1), ..., I(cht1®tnti).
Thus, one can obtain I(c; & - B c, Bt1 D - Dty) and I(chy1 B+ B Cppt D
the1 D -+ D tpay), 80, using z; and zo one can get I(e ® ¢y @ -+ D ¢p,) and
I(f®cki1 D Dcnyr),andso zs =I1(eD B B DD Cpy1 D DCpyy).
USing 23, I(Cl @ tl), LR I(Ck S2) tk)v and I(Cn+1 @ tn—i—l)a LR I(Cn—i-l 2 tn—H)? we
obtain zq. O

A derivation ¢ is minimal, if 6(z) # 6(j), for i # j. A derivation 0 is said
to be constant—closed, if for each i such that 0(¢) is not of the form I(c), for
c€Cp,if I(c),I(c) € 6y, for ¢,c’ € Cp, then I(c® ') € d<; (modulo ~). For
any derivation ¢ it is easy to obtain a minimal derivation §’ just by removing
repetitions. It is also easy to obtain a derivation which is constant—closed.

Now, we group the rules of P(6) into classes. If — g(x) is a protocol rule
of P, then a rule of P(6) of the form I(z60) = q(x0) is called a protocol rule. We
call Rules (9), (10) and the following standard intruder rules composition rules:

I(z), I(y) = I({z,y)), I(z), 1(k) = I({z},),
I(x), I(k) = I({a},), I(z) = hash(z).

15

We call Rule (7) and the following standard intruder rules decomposition rules:

I({z,y)) = I(x), I({z}y), I(k) = I(),
I({z,y)) = 1(y), I({zhy), I(k™") = I(x).
Rule (6) is called generating rule, and finally, Rule (8) is called wvariant rule.
If b1,...,b; is a derivation, then b;,bi11,...,b; for ¢ < j is a subsequence of

the derivation. A segment of a derivation is a maximal subsequence which does
not contain any element obtained by a protocol rule nor an element of the form
I(c), for ¢ € Cp. A derivation is normal, if

(i) it is modest, minimal, and constant—closed,

(ii) each segment consists of (a) push rules followed by (b) send rules followed
by (c¢) decomposition rules followed by (d) variant rules followed by (e)
composition rule.

Note that the number of segments in a minimal derivation is at most exponential
in the size of the protocol.

Lemma 9. If 0 is a constant—closed derivation, then variant rules do mot need
to use as a premise an atom obtained from a variant rule or from a composition
rule.

Proof. For the sake of contradiction, suppose that some application of variant
rule needs an element obtained by a composition or variant rule as a premise.
Let us take the first such application. So, the obtained element is I(co @ t) and
the premises are I(c; @ t) and I(c}), for some ¢; ¢ 0, with ¢y ~ ¢; & ¢}. Now,
we have two cases:

Case 1: I(c; @ t) was obtained by a composition rule, which means that I(¢)
and I(c;) were used to obtain it. But, since the derivation is constant—closed,
we could use I(c; @ ¢}) and I(t) to obtain I(co & t) by a composition rule.

Case 2: I(co @ t) and I(ch) were used to obtain I(c; @ t), for ¢1 ~ ca @ ¢h. By
our assumption, I(co @ t) is not obtained by the variant rule. But, because the
derivation is constant-closed, we could use I(cj & ¢)) and I(co @ t) to obtain
I(co@t) directly, which contradicts the assumption (note that co @} ®ch ~ ¢p).

O

Lemma 10. Ifdg is a modest derivation for (17), then there is a normal deriva-
tion § for (17). Moreover G(6p) = G(9).

Proof. Suppose that Jp is a modest derivation for (17). As we mentioned earlier,
it is easy to obtain a constant—closed and minimal version §; of it. Note that
G(d0) = G(61). We will obtain a normal derivation ¢ by reordering the elements
of each segment of ;. One can easily see that this operation preserves the set
G(9).

First, we can observe that premises of (a) are not of the form I(t), so they
cannot be a result of (b), (¢), (d), nor (e). So we can place rules (a) in front of
the remaining ones. For the similar reason, we can place rules (b) in front of (c),

(d) and (e).

16

In order to show that results of (d) and (e) need not be used as premises
of (c), we consider two cases. Case 1: a term t is obtained from a term ¢’ by
a standard decomposition rule. If ¢’ is obtained by (e) then ¢ has to be known
earlier. The term ¢ cannot be obtained by (d), since (d) produces nonstandard
terms. Case 2: a term t is obtained from ¢ and ¢ @ ¢, for ¢ - 0, and there is no
other way to obtain it. If ¢ @& ¢ were obtained by a composition rule from ¢ and
t, then ¢ would be known earlier, so we can assume that ¢ & ¢ is obtained by
variant rule from some ¢’ @t and ¢” such that ¢ ~ ¢ @ ¢”. But in this case, by
Lemma 9, ¢ @t is not obtained neither by variant nor the composition rule. So,
we can use this term and ¢’ @ ¢ ~ ¢’ (which can be used because the derivation
is constant—closed) to obtain ¢.

To complete the proof, it is enough to note that, by Lemma 9, no conclusion
of (e) is necessary as a premise of (d). O

B.3 Profiles of Terms

Let t ¢ Cp be a standard term. Let ¢ be a derivation for (17). A composition-
segment in § is a maximal subsequence of elements obtained by composition
rules. A profile (w.r.t 0) of a term ¢ is a pair (¢, k), where ¢ € Cp (note that
0 € Cp) and i is a natural number such that:
(i) 0(3) ~ I(c®t), for some 7, and there is no j < i such that §(j) ~ I(c' @),
(ii) k is the number of composition—segments in d;.
We define a set o(9) as follows: ¢ € a(d) iff the profile of £ w.r.t. § is a. Note that,
if 6 is a normal derivation, then the number of (nonempty) profiles is bounded
exponentially in the size of the protocol.

Consider a derivation § and a nonempty profile a(8). We fix a term ¢ in the
following way. If @ = (0, k), then tJ = 0. Otherwise let tJ be a term which is
minimal (w.r.t. the subterm ordering) in the set (). Note that elements of «(0)
are standard terms. So, either 5, = 0 (note that in this case tJ, is not necessarily
an element of a(d)) or it is a standard term from the set «(d).

Lemma 11. Assume that § is a normal derivation for (17). Let t € «(d). If
5(i) is obtained by a composition rule and I(c ©t) € 64, then I(c Dt2) can be
derived from 6<; in at most two steps.

Proof. We consider two cases: Case 1: a = (0,k) and thus ¢, = 0. We have
I(c®t) € d<y. Since (0,k) is the profile of ¢, the element I(¢) cannot occur
after I(c®t), so it occurs in d<; too. Hence, from d.,;, we can derive ¢ which is
equivalent to ¢ @ t2.

Case 2: a = (d, k), for d # 0. The first occurrence of I(d ® t) and I(d @ t9)
cannot be obtained by a composition rule (if, for instance, I(d®t) were obtained
from I(d) and I(¢), then (d, k) could not by the profile of ¢). Furthermore, there
is no element obtained by any composition rule between I(d @ t) and I(d @ t2).
I(d @ t) cannot occur after I(c @ t), so I(d®t) € §.; and so I(d D t2) € 5.
Recall that we have also I(c®t) € d;. Hence, from d;, we can derive I(c @ d)
and then I(c @ t). O

17

Now, for a derivation § and a profile o, we define a function v;j from terms
to terms by the following equations.

Vg(m) =z for a variable x
VE(fte, .. tn) = f(V2(t1),...,Vo(ty)) for feX f#a
Vi(e)=c
Vicat)=cad Vi)
Vot @ Dty =cht| @@t for n > 1, where t; = ¢, if t €

a(d), and t; = V2(t;), otherwise.

We can note that, because t, is equal to 0 or it is a minimal element of a(J), we
have V(%) = 2. For a substitution 6, let V2(6) be the substitution defined by
the equality V2 (0)(x) = V3(0(z)), for each variable x. For a derivation d of the
length n, let Vo(5) = V3(5(1)),...,Vi(5(n)).

It is easy to prove the following two lemmas.

Lemma 12. If s; ~ sy then V(s1) ~ VI(s2).

Lemma 13. Let t be a term occurring in the protocol P (recall that P is ®-
linear). Then, for each substitution 0, we have VO (t0) ~ t(V5(8)).

For a derivation d and a profile a, we define the function k% from terms to
terms as follows: hl (t) = 10, if t € a(0), and hd,(t) = VI(t), otherwise.

Lemma 14. Let 6 be a normal derivation for 1(0) Fpgy I(Sec), and o be a
profile. Then there exists a normal derivation 6* for 1(0) Fpvsay) I(Sec) such

that G(6*) C {hS(t) | t € G(9)).

Proof. Let dg be a normal derivation for 1(0) Fp(gy I(Sec). We will iteratively use
Lemma 11 to obtain a derivation ¢ such that if §(¢) is obtained by a composition
rule and I(c ® t) € d«y, for some t € «(d), then I(c @ t,) € d«;: For each
composition-segment, let us take the first element of it, denote it by (). For
each profile a such that I(c @ t) € d<;, for some ¢t € a(d), and I(c B to) & d<;
we insert the two elements given by Lemma 11 right before this composition-
segment. Note that this operation does not splits any composition-segment, so
the profiles of terms remain the same (i.e. for each term ¢, we have t € a(dg) iff
t € a(6)). Hence V% (t) = V(t). Note that G(dy) = G(6).

Now, let 6’ = V2(5). We will show, by induction, that ¢ is a derivation for
1(0) Fp(vs (o)) I(Sec). So, assume that VI (8<;) is a proper derivation. We should
show that V2(3(7)) can be obtained from V2 (é-;) in one step. We consider a few
cases:

1. If 6(4) is obtained by some standard intruder rule, a protocol rule, or one of
the Rules (7), (8), (9), then the proof is straightforward.

2. 4(7) is obtained by send rule. We have (i) ~ I(t0) and 6(j) ~ q(s6), for
some j < i and some send rule g(s) — I(t). One can show that VI(t0) ~
t(V20) and VI(s) ~ s(V3(0)). Hence, by Lemma 12, we have V2 (5(i)) ~
I(Va(t9)) ~ I(t(V3(6))) and V3(3(5)) ~ a(Va(sh)) ~ q(s(Va(h))). Since
VI(5(5)) € V2(d<;), we can obtain V2(5(i)) from V2(5;) in one step.

18

3. If 6() is obtained by push rule, then the proof is similar.

4. §(i) = I(c® () is obtained by Rule (6) from I(c®t1 & - @ ty) and I(P
t; @ @ty,). In this case, we have I(c® Vo(t; @ --- @ t,)) € VI(d;) and
I(d oVt @ Dty)) € V2(6<;), so we can derive VI(5(i)) = c® ¢’ from
V2(5<;) in one step.

5.8(0) =I(co® - D, Dty @+ Bty is obtained by Rule (10) from I(cy),
I(c; @ t1), ..., I(cyh ®t,). Without lost of generality we can assume that
t; € ad) iff i € {1,...,k}, for some k. We have I(co) € VI(6-;) and
I(c; ®VI(t:)) € Vo(6<y), fori € {k+1,...,n}.

Because §(7) is obtained by a composition rule and, for i € {1,...,k}, we
have t; € a(8) and I(c; ®t;) € 0«4, then I(c; Dty) € 6«4 Since VO (t,) = ta,
we have also I(c; @ t,) € V2(0<;), for i € {1,...,k}. Hence, we can derive
V3(5(i)) from V2 (d~;) in one step.
One can show that G(8') C {hS(t) | t € G(6)} (we do not have equality here,
because some terms might have been canceled applying V?). However, §' may
be not normal (it may not be minimal). So, we apply Lemma 10 to obtain a
normal derivation 0* such that G(6*) = G(8") C {hd(t) | t € G()}. O

A derivation § is good, if it is modest, minimal, normal, and for each ¢,t' €
G(9) of the same profile o, we have t = t'.

Lemma 15. If, for some substitution 0, we have I1(0) p(g) 1(Sec), then there
exists a substitution 0" and a good derivation 0 for I(0) - pgry 1(Sec).

Proof. Let 6y be a normal derivation for 1(0) p(g,) I(Sec), for some 6. We will
iteratively apply Lemma 14, obtaining d1,ds,... together with 61,605, ..., such
that §; is a normal derivation for 7(0) Fp(,) I(Sec). We will do it as long as
there are two distinct terms t,t’ € G(6;) of the same profile «; in this case we
obtain 4,41 applying Lemma 14 for a. Since G(;41) C {h% (t) | t € G(6;)} and
R (t) = hdi (') = td, we have |G(6;11)| < |G(6;)]. We know that G (J) is finite.
Hence, after a finite number of steps we have to obtain a good derivation. a

Corollary 2. In a good derivation we have:

1. The number of distinct terms of the form c® t; & --- ® t,, for n > 1, is
bounded by some M dependent on the size of a protocol. Moreover, for each
such a term, n is bounded by some constant dependent of the size of the
protocol.

2. The number of segments, and thus of blocks of elements obtained by variant
rules, is bounded by some N dependent on the size of a protocol.

B.4 The Reduction

For each equivalence class [c] w.r.t. the XOR equality, for ¢ € Cp, we add a
constant denoted by [c] to X. Let < be a linear ordering relation on terms. As
in the previous section, we assume that nonstandard terms are represented by
expressions of the form c®t; ®--- Dt or t1 D --- D t,, if ¢ ~ 0, where c € Cp
and tq,...,t, ¢ Cp are standard. Now, we assume also that t; < -+ < ¢,.

19

fzl==zx for a variable x
Tel=c] for c € Cp

|—<t, s>—| — <I—t—|7 V—S—\>

Tt} = {7t}

Heb =A"eh,

Thash(t)™ = hash("¢7)
Ce@t = {rtj}[c]v
oot ={"tL{. . {Ttaa ", "t} G),
Fedti @@ty ' ={{"ta ", {. .., {"ta1 ", "ta "}, .. .}E}E}[C]

Fig. 2. Definition of "¢"

For a term ¢ (possibly with variables), we define "¢ in Figure 2, where e is
a fresh key. The rough idea of the reduction is as follows. For a ground term ¢,
the term "¢, which does not contain ¢, will serve as a canonical representation
of the equivalence class of ¢t (w.r.t. ~). We will construct a protocol P+ without
@ which is secure if and only if the original protocol P is. In particular, we will
prove that whenever, in an attack 6 on P, a term ¢ can be derived, then it is
possible to mimic this step in such a way that the term "¢ can be derived in a
corresponding attack on PT.

We denote by X' the signature of the original protocol P (containing, amongst
the others, the & symbol and constants used in P). By X’ we will denote the sig-
nature of PT which does not contain @, but in addition, contains new constants
(the constant e and the constants of the form [c]).

For a set of variables V', we define a set ©(V') of substitutions as follows:
o € Oy, if dom(o) =V and, for each z € V, we have o(x) =z or o(z) = c® z,
for some ¢ € Cp. Let P be a simple protocol. The definition of the protocol P+
is given on Figure 3. Rules (20) and (21) are intended to simulate Rule (6). Rule
(22) is intended to simulate Rule (10) . Note that, by Corollary 2, it suffices
to apply Rule (10) M times. Rules (23)—(25) are intended to simulate Rule (8)
(note that, by Corollary 2, the number of blocks of element obtained by variant
rule is bounded by N). Finally, Rule (26) is intended to simulate send rules of
the original protocol. We use here instances of the rules to be sure that terms in
the canonical form can be obtained. One can prove the following fact.

Lemma 16. Let t be a ®-linear term over X and o be a substitution over X
such that, for each variable x, o(x) is of the form s1®- - ® sy, for n > 1, where
81,...,8n are standard terms not in Cp. Then we have "t =Tt 797

Note that the protocol P does not contain ¢ and thus, by [14], existence of

an attack on PT is decidable. Hence, by the two following lemmas, existence of
an attack on @®-linear protocols is also decidable.

20

We extend the protocol P by the following protocol steps (we omit send programs, if
they are empty):

0— I([0]) (18)
(k] — I(k) for ke K (19)
(e, [€]) — I(["]) for ¢, c’, ¢ € Cp with ¢, ¢ I—XTOE; ¢’ (20)
{z}en {2 ten) — 1([e) foreach ¢/, ¢’ € Cp, where c ~ '®c” (21)
and z¢ is a fresh variable
([eo], {yi’a}[q], ey {yib’a}[cﬂ]) — for each ¢ € {1,..., M} and for dis- (22)
i,E i i tinct [co],. .., [cn], Where ¢ ~ co &
I s Y1 Y v o Ll)
(oA {yZooy }e }e}e}[C]) -+ ® ¢y, and y»© is a fresh variable,
forc=cy...cn
zi — p(zi) with the following send program: (23)
p((z,y)) = p(y), P'(2) (24)
P (({z}, [€]) = T({z}gey) fored €Cp (25)
for i = 1,..., N, where z' is a fresh variable and p is a fresh
predicate symbol.
To each send program @ of P we add the rules
q("te™) = I("sk™") for (q(t) — I(s)) € @, k € O(dom(t)) (26)
Fig. 3. Protocol P*

A pre-derivation is a sequence arq,...,a, such that a; can be derived from
ai,...,a;—1 (in some number of steps). A pre-derivation can be seen as an in-

complete derivation. One can easily see that if there is a pre-derivation, then
there is also a derivation. We say that a (pre-) derivation is @—free, if it does not
use the XOR operator.

Lemma 17. If a ®-linear protocol P is insecure, then P is insecure.

Proof. Assume that ¢ is a good derivation for (0) I-p(g) I(Sec), for some substi-
tution 6. We split § into 107 - - - dndn such that, for 1 < i < N, §; is a (possibly
empty) block of elements obtained by the variant rule, and no element in §; is
obtained by this rule. We define a substitution ¢’ in the following way:

(i) For z € dom(#), we put &' (x) ="0(x)"

(ii) If I(c) in ¢ is obtained by taking exclusive or of I(¢’ @ t) and I(c” & t),
then we put 6’(z¢) ="t (see rule (21)).

(i) If I(c®t1 B Dty) is the k-th long term derived in ¢ and it is obtained
from I(cp),I(c1 @ t1),...,I(cm @ t;), then we put 0’(yf’é) = ;7 for
i=1,...,mand ¢ =c¢q...cn, (see rule (22)).

(iv) If 0, consists of elements I(c; @ t;), for i = 1,...,m, and these elements
are obtained from I(c; @ t;) and I(c}), then we put

0'(z") = ({1 ey (D Tt e s lem]))-

21

For each 0 we define &), in the following way: 55, contains the following
elements: 1(6'(2%)), then p(#'(z*)), and finally T({"t: ")), for i € {1,...,m},
where t; and ¢; are terms given by definition of ¢’(z%).

We will show that p = '—51—'51 . -~'—5N—'5N is a @—free pre-derivation for
I(0) Fp+(ory I(Sec). So, we will show that each element p(i) of p can be derived
in some number of steps from p;. In case of the elements of 5k, we note that, be-
cause I(c;®t;) € 6(k) is obtained by the variant rule from I(c;@®t) and I(c/), so,
by Lemma 9, we have I(c), I(c;®t) € 61 - - -k and thus I([c¢/]) and I({rtj}[cé])
are in "6; -+~ "6, which suffices to derive I(8’(z%)). Further, p(6’(2*)) can be
derived from I(6'(z*)) by (23). Now, I({"t; "},), for i = 1,...,m, can be de-
rived using (24)—(25).

Now, consider an element p(k) = 76;(j)7, for some i and j. Note that if a € d;,
then Ta7 € §;. Note also that if a occurs in & before &;(j), then "a™ € pj. We
consider the following cases:

— If we assume that §;(j) was obtained either by a standard intruder rule or
by a push rule, then it is easy to check that "4;(j)” can be easily derived
(we use here (19) and (20)).

— 0;(j) was obtained by a send rule. Hence, 6;(j) = I(so) was obtained from
q(ro), for some send rule g(r) — I(s). We have ¢q("ro™) € p<k. One can
check that there exists a substitution o’ and a substitution x € ©(dom(r))
such that o = ko’ and, for each variable x, o/(z) is of the form s1 @ - - @ s,
for n > 1, where s1, ..., s, are standard terms not in Cp. Hence, by Lemma
16, we have ¢("rc"¢’7) = q("rko’") = q("ro) € p<k. So, we can derive
I("sko'™) = I("so™) from py in one step by (26).

— If 6;() was obtained by a protocol rule, i.e. 4;(j) = r(z6) was obtained from
I(x0), for a protocol rule z — r(z), then we have I(x8") = "I(26)" € p<,
by definition of ', and so we can derive r(x6") = r("2607).

— If §;(j) was obtained by (9) or (7), then p(k) can be obtained by the standard
push or pop rules.

— 0;(4) = I(c®’) was obtained from I(c®t1P- - -Pty,) and I(¢' Bty P- - -Pt,,) us-
ing (6). So, we can derive I({"t1 & - & t,) and I({"t1 @ -+ @t })
from py, (if ¢ £ 0 then we have a = I({"t1 & - - ® t,, '}) in p<y; otherwise,
I("t1®--- Bty ") € pek, and we can derive a by the encryption rule). Hence
I([¢' @ c]) can be derived from p<y by Rule (21) or (20) (if n = 0).

—6()=I{coDc1 @ Dc,®Dt1 ®--- Dty,) is the k-th long term derived in
0 and is obtained from I(cg) and I(c; ®t1),...,I(c, ®t,), for some n > 1,
using (10). Then we can obtain the element I({"t1,....tn "} 5.ae,)) PY
Rule (22). If ¢g @ --- @ ¢, ~ 0, then in an additional step we can obtain
I(Tt, ...yt). O

We complete the proof of Theorem 3 by the following lemma which says,
roughly speaking, that P+ does not allow to derive more attacks than P does.

Lemma 18. Let P be a ®-linear protocol. If PT is insecure, then P is insecure.

22

Proof. For a term t we define t , as follows.

L =c Lko=k
Lt 8) 5= (Lt Ls) L{ltI}kJ = {ILt_II}k
Atk =A{ctohy Athgo=co Lty
_{t7 S}e_l =t DS, Lhash(t) , = haSh(_tJ)

First, one can prove, by induction on the structure of terms, that, for each term
t over X and each substitution o over X', it holds

Lrt—ld)J ~ t|_¢4a (27)

Now, let 0 = ay,...,a, be a ®free derivation for 1(0) Fp+) I(Sec). Let ¢’ =
ay,...,a,, where a; = I(0), if a; is of the form p(t) or p’(¢) (recall that p and
p’ are fresh predicate symbols introduced in P*) and a} = __a;_, otherwise. We
will show that ¢’ is a pre-derivation for I(0) -p(¢) I(Sec). In order to do it, we
show that ¢’(i) can be derived from 47, in some number of steps. We consider
a number of cases. If 4(7) is obtained either by some intruder rule, a protocol
rule of P, a protocol rule introduced in P*, a push clause of P, or a push
rule introduced in PT, then the proof is straightforward, so we omit it. Let us
consider the remaining two cases:

— 0(4) is obtained by a send clause (26). Hence, §(7) is of the form I("sx70)
and is obtained from ¢("rx7o), for some ¢(r) — I(s) € @. So, we have
0L, 2 q("rrTo) ~ q(rk_o) (the last equivalence is by (27)). Thus, we can
derive I(sk_o_) which, by (27), is equivalent to I("sko).

— 0(i) is obtained by a send clause (25). So, 6(i) = I({t}.g) is obtained from
P'({({t},[c]))- One can check that I({t}) € d<; and I([¢']) € d<;. Hence
I(L{t}[c]_,) =I(c® t,) € 0 ; and I(_['])) = ¢ € ;. So, we can derive
Icpd @ t)=700). O

References

1. J.A. Bull and D.J. Otway. The authentication protocol. Technical Report
DRA/CIS3/PROJ/CORBA/SC/1/CSM/436-04/03, Defence Research Agency,
Malvern, UK, 1997.

2. Y. Chevalier, R. Kiisters, M. Rusinowitch, and M. Turuani. An NP Decision
Procedure for Protocol Insecurity with XOR. In LICS 2003, pages 261-270. IEEE,
Computer Society Press, 2003.

3. Y. Chevalier, R. Kiisters, M. Rusinowitch, and M. Turuani. Deciding the Security
of Protocols with Diffie-Hellman Exponentiation and Products in Exponents. In
ESTTCS 2003, volume 2914 of LNCS, pages 124-135. Springer, 2003.

4. Y. Chevalier, R. Kiisters, M. Rusinowitch, and M. Turuani. Deciding the Security
of Protocols with Commuting Public Key Encryption. ENTCS, 125(1):55-66, 2005.

5. H. Comon-Lundh and V. Cortier. New Decidability Results for Fragments of First-
order Logic and Application to Cryptographic Protocols. In RTA 2003, volume
2706 of LNCS, pages 148-164. Springer, 2003.

23

10.

11.

12.

13.

14.

15.

. H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and

insecurity decision in presence of exclusive or. In LICS 2003, pages 271-280. IEEE,
Computer Society Press, 2003.

V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic properties used
in cryptographic protocols. Journal of Computer Security, 14(1):1-43, 2006.

R. Kiisters. On the Decidability of Cryptographic Protocols with Open-ended Data
Structures. International Journal of Information Security, 4(1-2):49-70, 2005.

R. Kiisters and T. Wilke. Automata-based Analysis of Recursive Cryptographic
Protocols. In STACS 2004, volume 2996 of LNCS, pages 382—-393. Springer, 2004.
L.C. Paulson. Mechanized Proofs for a Recursive Authentication Protocol. In
CSFW-10, pages 84-95. IEEE Computer Society Press, 1997.

O. Pereira and J.-J. Quisquater. A Security Analysis of the Cliques Protocols
Suites. In CSFW-14, pages 73-81, IEEE Computer Society Press, 2001.

P.Y.A. Ryan and S.A. Schneider. An Attack on a Recursive Authentication Pro-
tocol. Information Processing Letters, 65(1):7-10, 1998.

V. Shmatikov. Decidable Analysis of Cryptographic Protocols with Products and
Modular Exponentiation. In (ESOP 2004), volume 2986 of LNCS, pages 355-369.
Springer, 2004.

T. Truderung. Selecting theories and recursive protocols. In CONCUR 2005,
volume 3653 of LNCS, pages 217-232. Springer, 2005.

K.N. Verma, H. Seidl, and T. Schwentick. On the complexity of equational horn
clauses. In CADE 2005, volume 3328 of LNCS, pages 337-352. Springer, 2005.

24

