User Tools

Site Tools

Rational Cryptography: Novel Constructions, Automated Verification and Unified Definitions

Oana Ciobotaru

Rational cryptography has recently emerged as a very promising field of research by combining notions and techniques from cryptography and game theory, because it offers an alternative to the rather inflexible traditional cryptographic model. In contrast to the classical view of cryptography where protocol participants are considered either honest or arbitrarily malicious, rational cryptography models participants as rational players that try to maximize their benefit and thus deviate from the protocol only if they gain an advantage by doing so. The main research goals for rational cryptography are the design of more efficient protocols when players adhere to a rational model, the design and implementation of automated proofs for rational security notions and the study of the intrinsic connections between game theoretic and cryptographic notions. In this thesis, we address all these issues. First, we present the mathematical model and the design for a new rational file sharing protocol which we call RatFish. Next, we develop a general method for automated verification for rational cryptographic protocols and we show how to apply our technique in order to automatically derive the rational security property for RatFish. Finally, we study the intrinsic connections between game theory and cryptography by defining a new game theoretic notion, which we call game universal implementation, and by showing its equivalence with the notion of weak stand-alone security.