User Tools

Site Tools

Extending and Applying a Framework for the Cryptographic Verification of Java Programs (BibTeX)

  author      = {Ralf K{\"u}sters and Enrico Scapin and Tomasz Truderung and J{\"u}rgen Graf},
  editor      = {Mart\'{\i}n Abadi and Steve Kremer},
  title       = {{Extending and Applying a Framework for the Cryptographic Verification of Java Programs}},
  booktitle   = {Principles of Security and Trust - Third International Conference, POST 2014},
  publisher   = {Springer},
  series      = {Lecture Notes in Computer Science},
  pages       = {220--239},
  volume      = 8414,
  year        = 2014,
  note        = {A full version is available at \url{}},
  abstract    = {In our previous work, we have proposed a framework which allows tools that can check standard noninterference properties but a priori cannot deal with cryptography to establish cryptographic indistinguishability properties, such as privacy properties, for Java programs. We refer to this framework as the CVJ framework (Cryptographic Verification of Java Programs) in this paper.  While so far the CVJ framework directly supports public-key encryption (without corruption and without a public-key infrastructure) only, in this work we further instantiate the framework to support, among others, public-key encryption and digital signatures, both with corruption and a public-key infrastructure, as well as (private) symmetric encryption.  Since these cryptographic primitives are very common in security-critical applications, our extensions make the framework much more widely applicable.  To illustrate the usefulness and applicability of the extensions proposed in this paper, we apply the framework along with the tool Joana, which allows for the fully automatic verification of noninterference properties of Java programs, to establish cryptographic privacy properties of a (non-trivial) cloud storage application, where clients can store private information on a remote server.},